

Sergio Gómez Universitat Rovira i Virgili, Tarragona (Spain)

CCS / DOOCN-XI 2018 Thessaloniki

Outline

- Motivation
- Competition dynamics
- Ground State
- Optimization
- Results

Structure Multiplex network

Individuals can choose between several alternatives

- □ Individuals can choose between several alternatives
- □ Using several alternatives at once has a cost

- □ Individuals can choose between several alternatives
- □ Using several alternatives at once has a cost
- □ Sharing an alternative with peers is beneficial

- □ Individuals can choose between several alternatives
- □ Using several alternatives at once has a cost
- □ Sharing an alternative with peers is beneficial

- □ Individuals can choose between several alternatives
- □ Using several alternatives at once has a cost
- □ Sharing an alternative with peers is beneficial

□ Individuals can choose between several alternatives

- Using several alternatives at once has a cost
- □ Sharing an alternative with peers is *beneficial*

Individuals can choose between several alternatives

- Using several alternatives at once has a cost
- □ Sharing an alternative with peers is *beneficial*

Competition between layers

Structure

Mathematical description Adjacency (or weights) tensor • $M_{i\beta}^{i\alpha}$ node *i* in layer α connects to node *j* in layer β $\mathbb{R}^{N \times L \times N \times L}$

De Domenico et al: Mathematical formulation of multilayer networks *Physical Review X* **3** (2013) 041022

Mathematical description

Supra-adjacency matrix

- $\mathbf{W}^{(\alpha)}$ adjacency (or weights) matrix of layer α
- **D**^($\alpha\beta$) interaction matrix between layers α and β

$$\mathcal{J} = \begin{pmatrix} \mathbf{W}^{(1)} & 0 & \dots & 0 \\ 0 & \mathbf{W}^{(2)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{W}^{(L)} \end{pmatrix} + \begin{pmatrix} \mathbf{D}^{(11)} & \mathbf{D}^{(12)} & \dots & \mathbf{D}^{(1L)} \\ \mathbf{D}^{(21)} & \mathbf{D}^{(22)} & \dots & \mathbf{D}^{(2L)} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{D}^{(L1)} & \mathbf{D}^{(L2)} & \dots & \mathbf{D}^{(LL)} \end{pmatrix}$$

$$\mathcal{J} = \bigoplus_{\alpha=1}^{L} \mathbf{W}^{(\alpha)} + \mathcal{D}$$

Mathematical description

Supra-adjacency matrix *multiplex network*

- $\mathbf{W}^{(\alpha)}$ adjacency (or weights) matrix of layer α
- $\blacksquare D^{(\alpha\beta)}$ interaction strength between layers α and β

$$\mathcal{J} = \begin{pmatrix} \mathbf{W}^{(1)} & 0 & \dots & 0 \\ 0 & \mathbf{W}^{(2)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{W}^{(L)} \end{pmatrix} + \begin{pmatrix} D^{(11)}\mathbf{I} & D^{(12)}\mathbf{I} & \dots & D^{(1L)}\mathbf{I} \\ D^{(21)}\mathbf{I} & D^{(22)}\mathbf{I} & \dots & D^{(2L)}\mathbf{I} \\ \vdots & \vdots & \ddots & \vdots \\ D^{(L1)}\mathbf{I} & D^{(L2)}\mathbf{I} & \dots & D^{(LL)}\mathbf{I} \end{pmatrix}$$

$$\mathcal{J} = \bigoplus_{\alpha=1}^{L} \mathbf{W}^{(\alpha)} + \mathbf{D} \otimes \mathbf{I}$$

Mathematical description

Supra-adjacency matrix *multiplex network*

- $\mathbf{W}^{(\alpha)}$ adjacency (or weights) matrix of layer α
- $\blacksquare D^{(\alpha\beta)}$ interaction strength between layers α and β

$$= \begin{pmatrix} \mathbf{W}^{(1)} & 0 & \dots & 0 \\ 0 & \mathbf{W}^{(2)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{W}^{(L)} \end{pmatrix} + \begin{pmatrix} D^{(11)}\mathbf{I} & D^{(12)}\mathbf{I} & \dots & D^{(1L)}\mathbf{I} \\ D^{(21)}\mathbf{I} & D^{(22)}\mathbf{I} & \dots & D^{(2L)}\mathbf{I} \\ \vdots & \vdots & \ddots & \vdots \\ D^{(L1)}\mathbf{I} & D^{(L2)}\mathbf{I} & \dots & D^{(LL)}\mathbf{I} \end{pmatrix}$$

Hypotheses

J

- □ All nodes same interlayer strength
- □ No self-loops
- Symmetry

 $\mathbf{D}^{(\alpha\beta)} = D^{(\alpha\beta)}\mathbf{I}$ $D^{(\alpha\alpha)} = 0$ $D^{(\alpha\beta)} = D^{(\beta\alpha)}$

Mathematical description Two-layer multiplex networks

$$\mathcal{J} = \begin{pmatrix} \mathbf{W}^{(1)} & 0\\ 0 & \mathbf{W}^{(2)} \end{pmatrix} + J_x \begin{pmatrix} 0 & \mathbf{I}\\ \mathbf{I} & 0 \end{pmatrix}$$

Gómez et al: Diffusion dynamics on multiplex networks *Physical Review Letters* **110** (2013) 028701

Related dynamics

Diffusion in multiplex networks

$$\dot{x}_{i}^{(\alpha)} = \sum_{j=1}^{N} w_{ij}^{(\alpha)} (x_{j}^{(\alpha)} - x_{i}^{(\alpha)}) + \sum_{\beta=1}^{L} D^{(\alpha\beta)} (x_{i}^{(\beta)} - x_{i}^{(\alpha)})$$

Laplacian

$$\mathcal{L} = \mathcal{L}^{L} + \mathcal{L}^{I}$$
$$\mathcal{L}^{L} = \bigoplus_{\alpha=1}^{M} L^{(\alpha)}$$
$$\mathcal{L}^{I} = L^{I} \otimes I$$

Diffusion time $\tau \sim \frac{1}{\lambda_2(\mathcal{L})}$

Gómez et al: Diffusion dynamics on multiplex networks *Physical Review Letters* **110** (2013) 028701

Competition dynamics

Variables

 $\square p_i^{(\alpha)}$ probability of node *i* being active in layer α

$$\sum_{\alpha=1}^{L} p_i^{(\alpha)} = 1$$

CompetitionHamiltonian

$$H(\mathbf{P}) = -\sum_{\alpha,\beta=1}^{L} \sum_{i,j=1}^{N} J_{ij}^{(\alpha\beta)} p_i^{(\alpha)} p_j^{(\beta)}$$

where

$$\mathcal{J} = \bigoplus_{\alpha=1}^{L} \mathbf{W}^{(\alpha)} + \mathbf{D} \otimes \mathbf{I}$$

Competition in two-layer multiplex
 Variables

$$p_i^{(1)} = p_i$$
 $p_i^{(2)} = 1 - p_i$

Hamiltonian

$$H(\vec{p}) = -\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i)(1-p_j)$$
$$-2J_x \sum_{i=1}^{N} p_i (1-p_i)$$

layer 1 layer 2

Competition in two-layer multiplex

$$H(\vec{p}) = -\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i)(1-p_j) - 2J_x \sum_{i=1}^{N} p_i (1-p_i)$$

$$H(\vec{p}) = \left[-\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j\right] - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i)(1-p_j) - 2J_x \sum_{i=1}^{N} p_i (1-p_i)$$

Minimum value when

Competition in two-layer multiplex

all $p_i = 1$

$H(\vec{p}) = -\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j \left[-\sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i)(1-p_j) - 2J_x \sum_{i=1}^{N} p_i (1-p_i) \right]$ Minimum value when all $p_i = 0$

Competition in two-layer multiplex

Competition in two-layer multiplex

$$H(\vec{p}) = -\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i) (1-p_j) \left[-2J_x \sum_{i=1}^{N} p_i (1-p_i) \right]$$

Minimum value when all $p_i = 0.5$

Magnetization

$$M(\vec{p}) = \frac{1}{N} \sum_{i=1}^{N} (2p_i - 1)$$

All $p_i = 1$ \longrightarrow M = +1 \implies All nodes in first layer
All $p_i = 0.5$ \implies M = 0 \implies All nodes equally in all layers
All $p_i = 0$ \implies M = -1 \implies All nodes in second layer

Ground state

Minimize

$$H(\vec{p}) = -\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i)(1-p_j)$$
$$-2J_x \sum_{i=1}^{N} p_i (1-p_i)$$

with the constraints

 $0 \leq p_i \leq 1$ \implies solution inside the $[0, 1]^N$ hypercube

Ground state

Quadratic programming problem

Minimize

$$H(\vec{p}) = -\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1 - p_i) (1 - p_j)$$
$$-2J_x \sum_{i=1}^{N} p_i (1 - p_i)$$

with the constraints

 $0 \leq p_i \leq 1 \quad \Longrightarrow \quad \text{solution inside the } [0,1]^N \text{ hypercube}$

Gradient

$$\frac{\partial H}{\partial p_i} = -2\sum_{j=1}^N W_{ij}^{(1)} p_j + 2\sum_{j=1}^N W_{ij}^{(2)} (1-p_j) - 2J_x (1-2p_i)$$

Zero gradient equation

$$\left[2J_x\mathbf{I} - \left(\mathbf{W}^{(1)} + \mathbf{W}^{(2)}\right)\right]\vec{p} = J_x\vec{1} - \vec{s}^{(2)} \quad \Longrightarrow \quad \vec{p}^*$$

Hessian

$$\frac{\partial^2 H}{\partial p_i \partial p_j} = 2 \left(2J_x \delta_{ij} - W_{ij}^{(1)} - W_{ij}^{(2)} \right)$$

Ground state conditions

- \Box If \vec{p}^{\star} inside $[0,1]^N$ and Hessian positive definite
 - \vec{p}^{\star} is feasible solution
 - \vec{p}^{\star} is the ground state

Else

- Ground state lies in one side of the hypercube $\left[0,1
 ight]^N$

■ Asymptotic limits □ When $J_x \gg 1$ □ When $J_x = 0$

• Asymptotic limits • When $J_x \gg 1$

• Asymptotic limits \Box When $J_x \gg 1$

$$H(\vec{p}) = -\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i) (1-p_j) \left[-2J_x \sum_{i=1}^{N} p_i (1-p_i) \right]$$

$$Minimum value when all p_i = 0.5$$
 Other terms negligible

Asymptotic limits \Box When $J_x = 0$

$$H(\vec{p}) = \left[-\sum_{i,j=1}^{N} W_{ij}^{(1)} p_i p_j - \sum_{i,j=1}^{N} W_{ij}^{(2)} (1-p_i)(1-p_j) - 2J_x \sum_{i=1}^{N} p_i (1-p_i)\right]$$

Other term negligible

Indi terri negnyisis

• Asymptotic limits \Box When $J_x = 0$

• Gradient at $\vec{p} = \vec{1}$

• Gradient at $\vec{p} = \vec{1}$

$$\left. \frac{\partial H}{\partial p_i} \right|_{\vec{p}=\vec{1}} = 2 \left(J_x - s_i^{(1)} \right)$$

□ If
$$J_x$$
 below $J_x^c = \min_{i=1,...,N} (s_i^{(1)}) = s_{\min}^{(1)}$
• $\vec{p}^* = \vec{1}$

Solutions diagram

Solutions diagram

Combinatorial optimization

NP-complete / NP-hard optimization problems
 Many variables
 Huge search space
 No known polynomial time algorithms

Algorithms
 Local search
 Collective search

Hybrid search

Local search

□ Characteristics

- One individual moves in the search state
- Travel guided by local information
- Short-term memory
- Try to avoid local optima
- □ Some methods
 - Gradient descent
 - Simulated annealing
 - Tabu search
 - Extremal optimization

Local search methods Gradient descent

- Continuous variables
- Needs the gradient
- Easily stacked in local minima
- Add noise or inertia to improve search

Simulated annealing

- Inspired by physics at equilibrium
- Adequate for discrete variables
- Explore neighbors
- Allow uphill moves with certain probability (temperature)

Local search methods

- Tabu search
 - Adequate for discrete variables
 - Explore neighbors
 - Forbid uphill moves in a certain tabu list

Extremal optimization

- Inspired by physics out of equilibrium
- Adequate for discrete variables
- Explore neighbors
- Objective function sum of one-variable terms
- Improve the worst contribution

Collective search

□ Characteristics

- Several individuals move in the search state
- Communication between individuals
- Travel guided by local and global information
- Long-term memory, swarm intelligence, diversity

Some methods

- Evolutionary computation
 - □ Genetic algorithms
 - Evolution strategies
- Swarm intelligence
 - □ Particle swarm optimization
 - □ Ant colony systems
 - □ Artificial bee colony

Collective search methods Genetic algorithms

- Inspired by evolution and natural selection
- Adequate for discrete binary variables
- Population of individuals, each with a chromosome
- Iteration over generations
- Selection
- Reproduction (crossover)
- Mutation
- Elitism

Collective search methods

□ Particle swarm optimization (PSO)

- Inspired by bird flocks and fish schools
- Adequate for continuous variables
- Set of particles
- Each particle has position and velocity
- Each particle remembers its best position
- Inertia
- Approach local best
- Approach global best

Hybrid search

- Collective search + Local optimization
- Memetic algorithms

Results

Ground state search
 Standard optimization package
 METIS, failed

Local search

Simulated annealing, failed

□ Collective search

Particle swarm optimization, success selected

Competition in two-layer multiplex networks

56

Competition in two-layer multiplex networks

Concluding remarks

- Model of competition between layers
- Analytically tractable in part of the phase diagram
- Optimization heuristics required
 - □ There is life beyond simulated annealing!
 - □ Use the most appropriate
 - □ Try several
 - □ Check always the natural candidate solutions

Thank you for your attention!

Contact

- □ <u>sergio.gomez@urv.cat</u>
- <u>http://deim.urv.cat/~sergio.gomez/</u>

References

J Gómez-Gardeñes, M De Domenico, G Gutiérrez, A Arenas, S Gómez Layer-layer competition in multiplex complex networks Philosophical Transactions of the Royal Society A 373 (2015) 20150117

10th International Conference on Complex Networks

COMPLENET 19 18-21 MARCH 2019

https://complenet.weebly.com TARRAGONA, SPAIN

CompleNet 2019

Antoine Allard

Francesca Colaiori

Manlio De Domenico

Mason A. Porter

H. Eugene Stanley

Raissa M. D'Souza

James Gleeson

Marta C. González

Roger Guimerà

Philipp Hövel

Sonia Kéfi

Susanna Manrubia

Chiara Poletto

Thank you for your attention!

Contact

- □ <u>sergio.gomez@urv.cat</u>
- <u>http://deim.urv.cat/~sergio.gomez/</u>

References

J Gómez-Gardeñes, M De Domenico, G Gutiérrez, A Arenas, S Gómez Layer-layer competition in multiplex complex networks Philosophical Transactions of the Royal Society A 373 (2015) 20150117