Multi-scale mixing in complex networks

Leto Peel

Université catholique de Louvain

@PiratePeel

Assortativity

Disassortativity

Mixing in real networks

Mixing in real networks

Mixing in real networks

Generalisation, not rules!

$$r_{\rm global} = \frac{\sum_g e_{gg} - \sum_g a_g b_g}{1 - \sum_g a_g b_g}$$

Newman "Mixing patterns in networks" Phys. Rev. E (2003)

 $r \sim -0.3$

Assortativity is correlation across edges

Assortativity is correlation across edges

Anscombe, "Graphs in Statistical Analysis". American Statistician (1973)

All these networks have assortativity r=0

Peel, Delvenne, Lambiotte, "Multiscale mixing patterns in networks". PNAS (2018)

Can we measure assortativity locally?

Time series analysis

The mean is only representative of the data around the middle of the time series

Time series analysis

Exponentially weighted mean

Recent points are more relevant

$$S_t = lpha y_{t-1} + (1-lpha) S_{t-1} \quad 0 < lpha \leq 1$$

Random walks on a graph

 $e_{gh} = \sum_{ij} w(i) \quad \frac{A_{ij}}{k_i} \, \delta_{y_i,g} \delta_{y_j,h}$

g

 $w(i;\ell)$

stationary distribution of a random walk (PageRank)

Random walks on a graph

$$e_{gh}(\alpha,\ell) = \sum_{ij} w(i;\ell) \frac{A_{ij}}{k_i} \, \delta_{y_i,g} \delta_{y_j,h}$$

stationary distribution of a random walk with restart (Personalised PageRank)

Random walks on a graph

$$e_{gh}(\alpha, \ell) = \sum_{ij} w(i; \ell) \frac{A_{ij}}{k_i} \,\delta_{y_i, g} \delta_{y_j, h}$$
$$r(\alpha, \ell) = \frac{\sum_g e_{gg}(\alpha, \ell) - \sum_g a_g b_g}{1 - \sum_g a_g b_g}$$

Karate club - factions

Weddell Sea food web

Facebook 100 – residence

Peel, Delvenne, Lambiotte, "Multiscale mixing patterns in networks". PNAS (2018)

Summary

Assortativity is a correlation coefficient (or autocorrelation)

- can lead to ambiguity in its interpretation

Often we observe variation in the assortativity across the network

- In some cases its not possible to have constant assortativity

Our framework provides a means to compute global network measures within a local neighbourhood

Advertisement

The Winter Workshop on Complex Systems is a one-week workshop where young researchers from all over the world gather together for discussing about complexity science and engaging into novel research projects.

Applications now open! http://wwcs2019.org/

February 4-8th 2019 Zakopane, Poland

Questions?

Multiscale mixing patterns in networks

Leto Peel, Jean-Charles Delvenne, and Renaud Lambiotte

PNAS April 17, 2018. 115 (16) 4057-4062; published ahead of print April 2, 2018. https://doi.org/10.1073/pnas.1713019115

Jean-Charles Delvenne Renaud Lambiotte

<u>Contact</u>

leto.peel@uclouvain.be

@PiratePeel