Characterizing the analogy between hyperbolic embedding and community structure of complex networks

Filippo Radicchi

filiradi@indiana.edu

filrad.homelinux.org

INFORMATICS, COMPUTING, AND ENGINEERING

in collaboration with A. Fageeh and S. Osat

Supported by

NSF

Low-dimensional embedding of networks

Embedding in the hyperbolic space

Community structure

Embedding in metric spaces

M.A. Serrano, D. Krioukov, and M. Boguna, "Self-similarity of complex networks and hidden metric spaces," Physical Review Letters 100, 078701 (2008).M. Boguna, D. Krioukov, and K.C. Claffy, "Navigability of complex networks," Nature Physics 5, 74–80 (2009).

Embedding in the hyperbolic space

D. Krioukov et al. "Curvature and temperature of complex networks," Physical Review E 80, 035101 (2009).D. Krioukov et al., "Hyperbolic geometry of complex networks," Physical Review E 82, 036106 (2010).M. Boguna et al., "Sustaining the internet with hyperbolic mapping," Nature Communications 1, 62 (2010).G. Bianconi and C. Rahmede, "Emergent hyperbolic network geometry," Scientific Reports 7 (2017).

Network models in the hyperbolic space Popularity-similarity optimization model (PSOM)

Every node i is a point in the hyperbolic space

 $(r_i, heta_i)$

The probability that nodes i and j are connected is indicated with

 $p(x_{ij})$

 x_{ij} distance of nodes i and j, it includes:

 $\gamma\,$ exponent power-law degree distribution

 $\langle k \rangle$ average degree

temperature (clustering)

 r_i radial coordinate. It accounts for popularity. It is proportional to the degree of the node.

angular coordinate. Angular difference between nodes coordinates accounts for similarity.

F. Papadopoulos et al., "Popularity versus similarity in growing networks," Nature 489, 537–540 (2012).

Embedding networks in the hyperbolic space Hypermap

Radial coordinates of nodes (and additional model parameters) are estimated from the observed network

$$r_i \sim k_i$$

Angular coordinates of nodes are inferred from the observed topology by maximizing the likelihood

$$L = \prod_{i < j} p(x_{ij})^{A_{ij}} (1 - p(x_{ij}))^{1 - A_{ij}}$$

The temperature T is generally treated as a free parameter that can be tuned depending on the application (e.g., most effective routing protocol).

F. Papadopoulos, C. Psomas, and D. Krioukov, "Network mapping by replaying hyperbolic growth," IEEE/ ACM Transactions on Networking (TON) 23, 198–211 (2015).

F. Papadopoulos, R. Aldecoa, and D. Krioukov, "Network geometry inference using common neighbors," Physical Review E 92, 022807 (2015).

Community structure

S. Fortunato, "Community detection in graphs," Physics reports 486, 75–174 (2010).

Network models for community structure

Degree-corrected stochastic block model (SBM)

 k_i Node degree. It accounts for popularity.

Every node i is represented by the coordinates

$$(k_i, \sigma_i)$$

Node membership. σ_i Memberships of pairs of nodes are used to determine their similarity.

B. Karrer and M.E.J. Newman, "Stochastic blockmodels and community structure in networks," Physical Review E 83, 016107 (2011).

T.P. Peixoto, "Bayesian stochastic blockmodeling," arXiv preprint arXiv:1705.10225 (2017).

Finding communities in networks

Under the SBM ansatz, memberships of nodes are inferred from the observed topology by maximizing the likelihood

$$L = \prod_{i < j} p(\sigma_i, \sigma_j)^{A_{ij}} (1 - p(\sigma_i, \sigma_j))^{1 - A_{ij}}$$

A huge number of methods are available for community detection: spectral methods, modularity maximization methods,

B. Karrer and M.E.J. Newman, "Stochastic blockmodels and community structure in networks," Physical Review E 83, 016107 (2011).
T.P. Peixoto, "Bayesian stochastic blockmodeling," arXiv preprint arXiv:1705.10225 (2017).
S. Fortunato, "Community detection in graphs," Physics reports 486, 75–174 (2010).

The rationale of the study

Embedding in the hyperbolic space

Community structure

The two representations are different in many respects. However, their basic ingredients are similar. Are the two representations analogous in practical cases? Can we understand the same system properties using either one or the other representation?

Quantifying the analogy data

-			
layer 1	Rattus, layer 1	1,866	
layer 2	Rattus, layer 2	529	
layer 1	Air/Train, layer 1	69	
layer 2	Air/Train, layer 2	67	
200909	ARK200909	24,091	
201003	ARK201003	26,307	
201012	ARK201012	29,333	
emails	Enron emails	33,696	
chords	Music chords	2,476	
Transp.	OpenFights Air Transp.	3, 397	
bolites	Human Metabolites	1,436	
oteome	Human HI-II-14 proteome	4,100	
nternet	AS Internet	23,748	
= 0.58	AS Oregon Interent, $T = 0.58$	6,474	
= 0. 14	Air Transportation, $T = 0.14$	3,618	
= 0.92	P2P, $T = 0.92$	6,299	
= 0.28	Euro Roads, $T = 0.28$	1,039	
r = 0. 1	$PSOM, \langle k \rangle = 5, \gamma = 2.1, T = 0.1$	4,114	
T = 0.9	$PSOM, \langle k \rangle = 5, \gamma = 2.1, T = 0.9$	4,180	

39 real networks + 2
instances of the PSOM

network	N
IPv4 Internet	37,542
IPv6 Internet	5,143
C. Elegans, layer 1	248
C. Elegans, layer 2	258
C. Elegans, layer 3	278
D. Melanogaster, layer 1	752
D. Melanogaster, layer 2	633
arXiv, layer 1	1,537
arXiv, layer 2	2,121
arXiv, layer 3	129
arXiv, layer 4	3,669
arXiv, layer 5	608
arXiv, layer 6	336
Physician, layer 1	106
Physician, layer 2	113
Physician, layer 3	110
SacchPomb, layer 1	751
SacchPomb, layer 2	182
SacchPomb, layer 3	2,340
SacchPomb, layer 4	819
Human brain, layer 1	85
Human brain, layer 2	78
Rattus, layer 1	1,866
Rattus, layer 2	529

Quantifying the analogy methods

Hyperbolic embedding

Real networks

Publicly available embeddings

Publicly available methods for hyperbolic embedding

PSOM

Generated with publicly available algorithms, embedding given by ground-truth values

KK Kleineberg et al., "Hidden geometric correlations in real multiplex networks," Nature Physics 12, 1076–1081 (2016). KK Kleineberg et al., "Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks," Physical Review Letters 118, 218301 (2017). F. Papadopoulos, et al "Popularity versus similarity in growing networks," Nature 489, 537–540 (2012).

Community structure

Publicly available implementations of

Louvain Infomap algorithm by Ronhovde and Nussinov LFR benchmark graphs

VD Blondel et al., "Fast unfolding of communities in large networks," Journal of statistical mechanics: theory and experiment 2008, P10008 (2008).

M. Rosvall and C.T. Bergstrom, "Maps of random walks on complex networks reveal community structure," PNAS 105, 1118–1123 (2008).

P. Ronhovde and Z. Nussinov, "Local resolution-limit- free potts model for community detection," Phys. Rev. E 81, 046114 (2010).

A. Lancichinetti, S. Fortunato, and F. Radicchi, "Benchmark graphs for testing community detection algorithms," Physical review E 78, 046110 (2008).

Quantifying the analogy IPv4 Internet

Positions of points are determined by the hyperbolic embedding of the network

Colors identify the community membership of the nodes according to Louvain (C = 31 communities)

Z. Wang, et al., "Hyperbolic mapping of complex networks based on community information," Physica A: Statistical Mechanics and its Applications 455, 104–119 (2016).

Quantifying the analogy

Systematic analysis

Angular cohe	erence of a
comm	unity
$\xi_g \ e^{\mathrm{i}\phi_g} = \frac{1}{n_g}$	$\sum_{j=1}^N \delta_{\sigma_j,g} e^{\mathrm{i}\theta_j}$

Angular coherence of a community partition

$$\bar{\xi} = \frac{1}{N} \sum_{g=1}^{C} n_g \xi_g$$

Strength of the community partition is measured with the modularity function Q

		Louvain		in	Infomap			
network	N	C	Q	$ -\bar{\xi} $	<u> </u>	Q	$ -\bar{\xi} $	
IPv4 Internet	37, 542	31	0.61	0.72	1,625	0.47	0.94	I
IPv6 Internet	5,143	19	0.48	0.53	418	0.41	0.86	
C. Elegans, layer 1	248	9	0.65	0.70	29	0.61	0.83	I
C. Elegans, layer 2	258	9	0.50	0.82	23	0.46	0.84	I
C. Elegans, layer 3	278	7	0.44	0.87	11	0.42	0.86	Ī
D. Melanogaster, layer 1	752	17	0.64	0.82	70	0.59	0.91	I
D. Melanogaster, layer 2	633	17	0.64	0.72	68	0.60	0.89	
arXiv, layer 1	1,537	32	0.87	0.78	130	0.81	0.94	Ī
arXiv, layer 2	2, 121	35	0.86	0.74	190	0.79	0.96	
arXiv, layer 3	129	10	0.81	0.88	17	0.78	0.93	
arXiv, layer 4	3,669	46	0.82	0.69	290	0.74	0.91	
arXiv, layer 5	608	23	0.85	0.86	61	0.79	0.96	Ι
arXiv, layer 6	336	17	0.84	0.96	38	0.80	0.98	I
Physician, layer 1	106	8	0.51	0.78	13	0.52	0.80	
Physician, layer 2	113	10	0.56	0.79	14	0.55	0.77	I
Physician, layer 3	110	9	0.60	0.53	18	0.59	0.72	Ī

Y. Kuramoto, Chemical oscillations, waves, and turbulence (Dover Publications, New York, 1984). M.E.J Newman and M. Girvan, "Finding and evaluating community structure in networks," Physical Review E 69, 026113 (2004).

Consequences of the analogy

Can we interpret physical properties of networks deduced from their hyperbolic embedding using community structure only?

under targeted attack

KK Kleineberg et al., "Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks," Physical Review Letters 118, 218301 (2017).

under targeted attack

KK Kleineberg et al., "Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks," Physical Review Letters 118, 218301 (2017).

under targeted attack

Synthetic network model with tunable correlation among radial and angular coordinates

KK Kleineberg et al., "Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks," Physical Review Letters 118, 218301 (2017).

interpreted with communities

NMI is defined as in

L. Danon et al., "Comparing community structure identification," Journal of Statistical Mechanics: Theory and Experiment 2005, P09008 (2005).

interpreted with communities

1) Create two identical network instances of the LFR model, strength of community structure can be tuned by varying the mixing parameter value

2) Shuffle labels of nodes in one of the layers to destroy degree-degree correlations and edge overlap

> A) Shuffling is allowed only among pairs of nodes within the same community

NMI = 1

B) Shuffling is allowed among all pairs of nodes

NMI = 0

A. Lancichinetti, S. Fortunato, and F. Radicchi, "Benchmark graphs for testing community detection algorithms," Physical review E 78, 046110 (2008).

Navigability of networks greedy routing

algorithm

Strategy for delivering a packet from a source node s to a target node t

At every stage of the algorithm, the packet seating on node i chooses the next move according to the rule

$$j_{(best)}^{(i)} = \arg\min_{j\in\mathcal{N}_i} d(j,t)$$

If a packet reaches the target, it is considered delivered

If a packet visits a second time the same node, it is considered lost

metrics of performance

For random pairs of nodes s and t

z, success rate

<R> , average length of successful paths

Z < 1/R >, efficiency

M. Boguna et al., "Sustaining the internet with hyperbolic mapping," Nature Communications 1, 62 (2010).M. Boguna, D. Krioukov, and K.C. Claffy, "Navigability of complex networks," Nature Physics 5, 74–80 (2009).

Navigability of networks

greedy routing and community structure

$$j_{(best)}^{(i)} = \arg\min_{j\in\mathcal{N}_i} d(j,t)$$

We define a measure of "distance" among pairs of nodes in the stochastic block model

$$d(j,t) = \beta D_{\sigma_j,\sigma_t} - (1-\beta) \ln k_j$$

- D_{σ_j,σ_t} distance between modules in the stochastic block model, calculated using the log of the observed density of connections between communities k_j degree of node j
- $\sigma_j \quad$ module of node j

 β

weighting parameter (we chose the value that maximizes performance)

We vary the size S and the number C of the communities by changing the resolution parameter of the the algorithm by Ronhovde and Nussinov

Navigability of networks Success rate **Real networks** $\begin{array}{c} T \\ 0.50 \end{array}$ 0.000.250.751.00**PSMO** 1.01.0AS arXiv AT P2P success rate ER 0.50.5T = 0.1T = 0.5а T = 0.90.00.0 10^{3} 10^{2} 10^{1} 10^{2} 10^{3} 10^{1} average community size

F. Papadopoulos et al. "Network mapping by replaying hyperbolic growth," IEEE/ACM Transactions on Networking (TON) 23, 198–211 (2015).

Navigability of networks Other metrics of performance

The analogy

Embedding in the hyperbolic space

Community structure

The analogy holds for real and artificial networks

Physical properties of networks can be (equally well) explained using either framework

Implications of the analogy

 Inter-community structure in networks may have geometric organization, meaning that at the global level, geometry dominates, while at the local scale, community memberships prevail

• Real networks may be modeled by a graphon consisting of a mixture of latent-spatial and block-like structures.

Characterizing the analogy between hyperbolic embedding and community structure of complex networks

A. Faqeeh, S. Osat and F. Radicchi Phys. Rev. Lett. **121**, 098301 (2018)