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Embedding in metric spaces
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Embedding in the hyperbolic space

D. Krioukov et al. “Curvature and temperature of complex networks,” Physical Review E 80, 035101 (2009). 

D. Krioukov et al., “Hyperbolic geometry of complex networks,” Physical Review E 82, 036106 (2010).

M. Boguna et al., “Sustaining the internet with hyperbolic mapping,” Nature Communications 1, 62 (2010). 
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Network models in the hyperbolic space

F. Papadopoulos et al., “Popularity versus similarity in growing networks,” Nature 489, 537–540 (2012). 

Popularity-similarity optimization model (PSOM)

Every node i is a point in the 
hyperbolic space

(ri, ✓i)

radial coordinate. It accounts for popularity. 
It is proportional to the degree of the node.

The probability that nodes i and j 
are connected is indicated with

distance of nodes i and j, it includes:

exponent power-law degree distribution

average degree

temperature (clustering)

angular coordinate. Angular difference between nodes 
coordinates accounts for similarity.



Embedding networks in the hyperbolic space

F. Papadopoulos, C. Psomas, and D. Krioukov, “Network mapping by replaying hyperbolic growth,” IEEE/
ACM Transactions on Networking (TON) 23, 198–211 (2015). 

F. Papadopoulos, R. Aldecoa, and D. Krioukov, “Network geometry inference using common neighbors,” 
Physical Review E 92, 022807 (2015).  

Hypermap

Angular coordinates of nodes are 
inferred from the observed topology 

by maximizing the likelihood

Radial coordinates of nodes (and 
additional model parameters) are 

estimated from the observed 
network 

The temperature T is generally treated as a free parameter that can 
be tuned depending on the application (e.g., most effective routing 

protocol).



Community structure

S. Fortunato,“Community detection in graphs,”Physics reports 486, 75–174 (2010). 



B. Karrer and M.E.J. Newman, “Stochastic blockmodels and community structure in networks,” Physical 
Review E 83, 016107 (2011). 
T.P. Peixoto, “Bayesian stochastic blockmodeling,” arXiv preprint arXiv:1705.10225 (2017). 

Every node i is represented by 
the coordinates

Node degree. It accounts for popularity. 

Node membership. 
Memberships of pairs of nodes 

are used to determine their 
similarity. 

Network models for community structure
Degree-corrected stochastic block model (SBM)

Probabilities for pair of nodes to be connected depend on degree and memberships



Finding communities in networks

Under the SBM ansatz, 
memberships of nodes are inferred 

from the observed topology by 
maximizing the likelihood

A huge number of methods are available for community detection: 
spectral methods, modularity maximization methods, ….

B. Karrer and M.E.J. Newman, “Stochastic blockmodels and community structure in networks,” Physical 
Review E 83, 016107 (2011). 
T.P. Peixoto, “Bayesian stochastic blockmodeling,” arXiv preprint arXiv:1705.10225 (2017). 
S. Fortunato,“Community detection in graphs,”Physics reports 486, 75–174 (2010). 



Embedding in the 
hyperbolic space Community structure

The rationale of the study

The two representations are different in many respects. However, their 
basic ingredients are similar.  Are the two representations analogous in 
practical cases? Can we understand the same system properties using 

either one or the other representation?



Quantifying the analogy

39 real networks + 2 
instances of the PSOM

data



Quantifying the analogy

Hyperbolic embedding Community structure

Publicly available embeddings

Publicly available methods for 
hyperbolic embedding

Real networks

PSOM
Generated with publicly available 
algorithms, embedding given by 

ground-truth values

Louvain
Infomap

algorithm by Ronhovde 
and Nussinov 

Publicly available 
implementations of 

methods

KK Kleineberg et al., “Hidden geometric correlations in real 
multiplex networks,” Nature Physics 12, 1076–1081 (2016).  
KK Kleineberg et al., “Geometric correlations mitigate the 
extreme vulnerability of multiplex networks against targeted 
attacks,” Physical Review Letters 118, 218301 (2017).  
F. Papadopoulos, et al “Popularity versus similarity in growing 
networks,” Nature 489, 537–540 (2012). 

LFR benchmark graphs

VD Blondel et al., “Fast unfolding of communities in large 
networks,” Journal of statistical mechanics: theory and 
experiment 2008, P10008 (2008).  
M. Rosvall and C.T. Bergstrom, “Maps of random walks on 
complex networks reveal community structure,” PNAS 105, 
1118–1123 (2008). 
P. Ronhovde and Z. Nussinov, “Local resolution-limit- free 
potts model for community detection,” Phys. Rev. E 81, 
046114 (2010). 
A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark 
graphs for testing community detection algorithms,” Physical 
review E 78, 046110 (2008). 



Quantifying the analogy
IPv4 Internet 

Positions of points are 
determined by the 

hyperbolic embedding of 
the network

Colors identify the 
community membership 

of the nodes according to 
Louvain (C = 31 

communities)

Z. Wang, et al., “Hyperbolic mapping of complex networks based on community information,” Physica A: Statistical 
Mechanics and its Applications 455, 104–119 (2016).  



Quantifying the analogy
Systematic analysis

Angular coherence of a 
community

Strength of the community 
partition is measured with 
the modularity function Q

Y. Kuramoto, Chemical oscillations, waves, and turbulence (Dover Publications, New York, 1984).  
M.E.J Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical Review E 
69, 026113 (2004). 

Angular coherence of a 
community partition



Quantifying the analogy
Systematic analysis



Consequences of the analogy

Can we interpret 
physical 

properties of 
networks deduced 

from their 
hyperbolic 

embedding using 
community 

structure only?



Robustness of multiplex networks

KK Kleineberg et al., “Geometric correlations mitigate the extreme vulnerability of multiplex networks 
against targeted attacks,” Physical Review Letters 118, 218301 (2017). 

under targeted attack



Robustness of multiplex networks

KK Kleineberg et al., “Geometric correlations mitigate the extreme vulnerability of multiplex networks 
against targeted attacks,” Physical Review Letters 118, 218301 (2017). 

under targeted attack

geometric correlationrobustness



Robustness of multiplex networks

KK Kleineberg et al., “Geometric correlations mitigate the extreme vulnerability of multiplex networks 
against targeted attacks,” Physical Review Letters 118, 218301 (2017). 

under targeted attack

Synthetic network 
model with tunable 
correlation among 
radial and angular 

coordinates



Robustness of multiplex networks

Hyperbolic Louvain

Infomap

Louvain vs 
Infomap

Hyperbolic vs 
Infomap

Hyperbolic vs 
Louvain

interpreted with communities

L. Danon et al., “Comparing community structure identification,” Journal of 
Statistical Mechanics: Theory and Experiment 2005, P09008 (2005). 

NMI is defined as in 



Robustness of multiplex networks
interpreted with communities

A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community detection 
algorithms,” Physical review E 78, 046110 (2008). 

1) Create two identical network instances of 
the LFR model, strength of community 
structure can be tuned by varying the mixing 
parameter value

2) Shuffle labels of nodes in one of the 
layers to destroy degree-degree 
correlations and edge overlap 

A) Shuffling is allowed only 
among pairs of nodes within 
the same community

B) Shuffling is allowed 
among all pairs of nodes

NMI = 1

NMI = 0



Robustness of multiplex networks
LFR model

Strong and 
correlated

Weak and 
correlated

Strong and 
uncorrelated

Weak and 
uncorrelated

C =
p
N,S =

p
N



Robustness of multiplex networks

Strong and 
correlated

Weak and 
correlated

Strong and 
uncorrelated

Weak and 
uncorrelated

C = N/64, S = 64LFR model



Navigability of networks

Strategy for delivering a packet from a source node s to a target node t

greedy routing

At every stage of the algorithm, the packet seating on node i chooses 
the next move according to the rule

If a packet reaches the target, it is 
considered delivered

If a packet visits a second time the 
same node, it is considered lost

algorithm

metrics of performance
For random pairs of nodes s and t

z , success rate
 <R> , average length of successful paths
Z <1/R> , efficiency

M. Boguna et al., “Sustaining the internet with hyperbolic mapping,” Nature Communications 1, 62 (2010). 
M. Boguna, D. Krioukov, and K.C. Claffy, “Navigability of complex networks,” Nature Physics 5, 74–80 (2009).  



Navigability of networks
greedy routing and community structure

We define a measure of “distance” among pairs of nodes in the stochastic block model

D�j ,�t

kj
�j

�

distance between modules in the stochastic block model, calculated using 
the log of the observed density of connections between communities

module of node j

degree of node j

 weighting parameter (we chose the value that maximizes performance)

We vary the size S and the number C of the communities by changing the 
resolution parameter of the the algorithm by Ronhovde and Nussinov



Navigability of networks
Success rate

PSMO

Real networks

F. Papadopoulos et al. “Network mapping by replaying hyperbolic growth,” IEEE/ACM Transactions on 
Networking (TON) 23, 198–211 (2015). 



Navigability of networks

PSMO
Real networks

Other metrics of performance



The analogy
Embedding in the 
hyperbolic space Community structure

The analogy holds for real and artificial networks
Physical properties of networks can be (equally well) explained 
using either framework



Implications of the analogy

• Inter-community structure in networks may have geometric 
organization, meaning that at the global level, geometry 
dominates, while at the local scale, community memberships 
prevail 

• Real networks may be modeled by a graphon consisting of a 
mixture of latent-spatial and block-like structures. 
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