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Graph embeddings
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Application: Node classification
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Application: Link prediction
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Becoming ubiquitous in social applications

§ Graph embedding techniques are a powerful approach for 
social recommendations, bot detection, content screening, 
behavior prediction, geo-localization, 
§ E.g., Facebook, Huawei, Uber Eats, Pinterest, LinkedIn, WeChat

§ Classic collaborative filtering approaches can be re-
interpreted in a more general graph embedding 
framework.
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But what about fairness and privacy?

§ Graph embeddings designed to capture everything that 
might be useful for the objective.

§ Even if we don’t provide the model information about 
sensitive attributes (e.g., gender or age), the model will use 
this information. 

§ What if a user doesn’t want this information used?
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Fairness from a pragmatic perspective

§ Strict privacy and discrimination concerns are one 
motivation.

§ But what if users just don’t want their recommendations do 
depend on certain attributes?

§ What if users want the system to “ignore” parts of their 
demographics or past behavior?

William L. Hamilton, McGill University and Mila 8



Fairness in graph embeddings
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§ Basic idea: How can we learn node embeddings that are 
invariant to particular sensitive attributes?

§ Challenges:
§ Graph data is not i.i.d.
§ There is not just one classification task that we are trying to 

enforce fairness on.
§ There are often many possible sensitive attributes. 



Our work: Fairness in graph embeddings
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Preliminaries and set-up

§ Learning an encoder function to map nodes to embeddings:

§ Using these embeddings to “score” the likelihood of a 
relationship between nodes:
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Preliminaries and set-up

§ Learning an encoder function to map nodes to embeddings:

§ Using these embeddings to “score” the likelihood of a 
relationship between nodes:
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Score of a (possible) edge is a function of the two node 
embeddings and the relation type.



Preliminaries and set-up

§ Learning an encoder function to map nodes to embeddings:

§ Using these embeddings to “score” the likelihood of a 
relationship between nodes:
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Goal: Train the embeddings (with a subset of the true edges) so that 
the score for all real edges is larger than all non-edges. 



Preliminaries and set-up

§ Generic loss function:
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Sum over (batch 
of) training edges.

Task-specific loss 
function

Score assigned to 
positive/real edge.

Scores assigned to 
random negative 
sample edges.



Preliminaries and set-up: Concrete examples

§ Score functions:

§ Loss-functions:
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Preliminaries and set-up: Concrete examples

§ Score functions:
§ Dot-product:

§ Loss-functions:
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s(e) = s(hzu, r, zvi) = z>u zv



Preliminaries and set-up: Concrete examples

§ Score functions:
§ Dot-product:

§ TransE:

§ Loss-functions:
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Preliminaries and set-up: Concrete examples

§ Score functions:
§ Dot-product:

§ TransE:

§ Loss-functions:
§ Max-margin:
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Preliminaries and set-up: Concrete examples

§ Score functions:
§ Dot-product:

§ TransE:

§ Loss-functions:
§ Max-margin:

§ Cross-entropy:

William L. Hamilton, McGill University and Mila 19

s(e) = s(hzu, r, zvi) = z>u zv

s(e) = s(hzu, r, zvi) = �kzu + r� zvk22

Ledge(s(e), s(e
�
1 ), ..., s(e

�
m)) =

mX

i=1

max(1� s(e) + s(e�i ), 0)

Ledge(s(e), s(e
�
1 ), ..., s(e

�
m)) = � log(�(s(e))�

mX

i=1

log(1� �(s(e�i ))



Formalizing fairness

§ How do we ensure fairness in this context?
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Formalizing fairness

§ How do we ensure fairness in this context?
§ Solution: representational invariance 

§ Want embeddings to be independent from the attributes:

§ Which is equivalent to minimizing the mutual information to 
between the embeddings and the attributes:
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Enforcing fairness through an adversary
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Enforcing fairness through an adversary
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§ Key component 1: Compositional encoder.

§ Given a set of attributes, it outputs “filtered” embeddings 
that should be invariant to those attributes.

Trainable filter function (neural 
network) outputs embedding 
that is invariant to attribute k.

Input: node ID and 
set of sensitive 

attributes

Sum over all 
sensitive attributes



Enforcing fairness through an adversary
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§ Key component 2: Adversarial discriminators
§ For each sensitive attribute, train an adversarial discriminator that 

tries to predict that sensitive attribute from the filtered 
embeddings:

Output: Likelihood that node u 
has that attribute value.

Discriminator 
for sensitive 
attribute k.

Input: Filtered 
embeddding for node u

and attribute value.



Enforcing fairness through an adversary
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§ Putting it all together in an adversarial loss:

Likelihood of discriminator predicting the 
sensitive attributes. 

Original loss function for 
the edge prediction task

Constant that determines the 
strength of the fairness 

constraints



Enforcing fairness through an adversary
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§ Putting it all together in an adversarial loss:

§ During training the encoder tries to minimize this loss and the 
adversarial discriminators are trained to maximize it.



Enforcing fairness through an adversary
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Dataset 1: MovieLens-1M

§ Classic recommender system benchmark.
§ Bipartite graph between users and movies.

§ Nodes (~10,000): Users and movies
§ Edges (~1,000,000): Rating a user gives a movie
§ Sensitive attributes:

§ Gender
§ Age (binned to become a categorical attribute)
§ Occupation
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Dataset 2: Reddit
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§ Derived from public Reddit comments.

§ Bipartite graph between users and communities.

§ Nodes (~300,000): Users and communities

§ Edges (~7,000,000): Whether a user commented on that 
community

§ Sensitive attributes: Randomly select 50 communities to be 
“sensitive” communities



Dataset 3: Freebase 15k-237
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§ Derived from classic knowledge base completion 
benchmark.

§ Knowledge graph between set of typed entities. 

§ Nodes (~15,000): Users and communities

§ Edges (~150,000): 237 different relation types (e.g., 
married_to, born_in, capital_of, director_of)

§ Sensitive attributes: Randomly selected 3 entity type 
annotations (e.g., is_actor) to be “sensitive attributes”



Experiments: Three questions

1. What is the cost of invariance?

2. What is the impact of compositionality?

3. Can we generalize to unseen combinations 
of attributes?
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MovieLens: Fairness results
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§ How strongly can we enforce fairness?
§ Compare three approaches to enforcing fairness:

§ No adversary (i.e., just train on the recommendation task)
§ Independent adversarial model for each attribute
§ Full compositional model



MovieLens: Fairness results
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§ How strongly can we enforce fairness?
§ Evaluate how well a two-layer MLP can classify the sensitive attributes from 

the learned node embeddings.
§ AUC for the binary gender attribute
§ Micro-averaged F1-score for the age and occupation attributes.



MovieLens: Fairness results
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§ Key takeaways:
§ After applying the compositional adversary, accuracy is no better than 

majority classifier!
§ Performance of compositional adversary on par with independent 

adversaries! 



MovieLens: Impact on recommendations
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§ Evaluate recommendation 
performance (RMSE) with 
and without enforcing 
fairness. 

§ There is a drop in 
accuracy, but not 
catastrophic.
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MovieLens: Trade-off
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§ ! allows trade-off between fairness and recommendation performance. 



Reddit results: Fairness
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§ Same set-up as MovieLens, but here we have 10 sensitive attributes.
§ Again, able to strongly enforce fairness, but at a non-trivial cost.



Freebase results
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Ability to predict sensitive attributes (measured in AUC) 
and the impact on task-performance (mean rank)

§ On the synthetic Freebase data we see that enforcing fairness leads to a 
significant drop in task performance. 



Conclusions and outlook

§ Fairness in network representation learning is an 
understudied issue.

§ We can enforce fairness in a flexible way, but at a cost.

§ There is no perfect notion of fairness.
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