Weg2Vec: Event Embedding for Temporal Networks

Márton Karsai

Temporal Networks

- Interactions between entities are not present always but varying in time (Holme, Saramaki 2012)
 - Calls, SMS, f2f, @mentions, collaborations, transportation networks...

- **1. Temporal Graph:** $G_t = (V, E, T_e)$
 - V: set of vertices
 - E: set of edges
 - $T_e = \{t_1, t_{2,...,}, t_n\}$: set of times when edge *e* is active

1. Temporal Graph: $G_t = (V, E, T_e)$

- V: set of vertices
- E: set of edges
- $T_e = \{t_1, t_{2,...,}, t_n\}$: set of times when edge *e* is active

2. Contact sequence

(Similar representation is called link streams, (Latapy et al. 2018)

$$E \subset T \times V \times V(\times \prod_{i} A_i^e \times L)$$

where

- T is the set of time stamps
- V is the set of interacting entities
- A^e are event attribute set e.g. duration, cost, etc,
- L is a location set
- sequence of events $ev \in E$

t ₁	а	b
t2	а	С
t4	е	f
t10	f	а

- **1. Temporal Graph:** $G_t = (V, E, T_e)$
 - V: set of vertices
 - E: set of edges
 - $T_e = \{t_1, t_{2,...,}, t_n\}$: set of times when edge *e* is active

2. Contact sequence

(Similar representation is called link streams, (Latapy et al. 2018)

$$E \subset T \times V \times V(\times \prod_{i} A_{i}^{e} \times L)$$

3. Graphlet or snapshot representation

- Set of graphs representing aggregated interactions happening at the same time or interval
- Can be represented as a dynamic adjacency matrix $A_{ij}(t)$
- Can be represented as a multiplex network

t ₁	а	b
t2	а	С
t4	е	f
t10	f	а

time (day

Temporal Event Graphs

Time-respecting paths

- Temporal equivalent of topological path in static graphs
- · Consider a temporal contact network (for simplicity without durations)
- Any path between node has to respect the timing and ordering of events!

Definition

 Time-respecting path between node a and b is a set of events

 $\{(a, v, t_1), (v, w, t_2), \dots, (y, b, t_n)\}$

such that $t_1 < t_2 < ... < t_n$ and consecutive events are adjacent

(i.e. time ordered and share at least one node)

Time-respecting paths

- Temporal equivalent of topological path in static graphs
- · Consider a temporal contact network (for simplicity without durations)
- Any path between node has to respect the timing and ordering of events!

Definition

 Time-respecting path between node a and b is a set of events

 $\{(a, v, t_1), (v, w, t_2), \dots, (y, b, t_n)\}$

such that $t_1 < t_2 < ... < t_n$ and consecutive events are adjacent (i.e. time ordered and share at least one node)

Properties

- Reachable set of nodes are limited
- No reciprocity: the existence of the path *a-b* does not guarantee the existence of a *b-a* path
- No transitivity: the existence of the path *a*-*b* and *b*-*c* does not guarantee that there is a *a*-*b*-*c* path
- Time dependency: paths begin and end at certain times; if there is a path *a*-*b* that begins at *t*, this doesn't guarantee a path at *t*'>*t*
- They determine the spread of information thus the outcome of any collective phenomena

Weighted event graphs

Temporal networks

G = (V, E, T) with events $E \subset V \times V \times [0, T]$

Adjacent events

Events

$$e' = (b, c, t'$$

e = (a, b, t)are adjacent $e \to e'$ if \cdot Share a $\cdot t < t'$

Share at least one common node

Weighted event graphs Kivelä, Cambe, Saramäki, Karsai, Sci. Rep. (2018) Mellor J. Complex Netw. (2017).

$$D = (E, E_D, w)$$
 where

- nodes are events in G•
- · links $e_D \in E_D$ are adjacent events $e_D = e \rightarrow e'$
- weights are $w(e_D) = t' t$
- δt threshold for weights: keeping adjacent events which are closer in time than δt
- Static and lossless representation of all temporal and structural information •
- It is a weighted directed acyclic graph (DAG)
- Superposition of every (*St-connected*) time-respecting paths
- Its connectedness determines the outcome of any dynamical process

Temporal network

Weighted even graph

Weg2Vec: **Event Embedding** for **Temporal Networks**

Temporal network embedding

- Learn low-dimensional representations
- Capture temporal and structural regularities in the network
- Various applications: node classification, link prediction...

... or the prediction of spreading outcome

Event embedding

Event graph representation

Path (temporal) weight:

$$w_{path}(e_k, e_l) = \frac{1}{1 + |t_k - t_l|}$$

Event embedding

Event graph representation

Path (temporal) weight:

$$w_{path}(e_k, e_l) = \frac{1}{1 + |t_k - t_l|}$$

 Co-occurance (topological) weight:

 $W_{co-occ}(e_k, e_l)$

 Number of co-occurance of δt adjacent events on the same pair of adjacent static links

TEMPORAL NETWORK

Event embedding

We rely on the **static representations of the temporal networks** to generate the **contexts** to be passed as input to **Word2Vec**

$$p(e_l) = \alpha \mathcal{F}(w_{path}(e_k, e_l) + (1 - \alpha) \mathcal{F}(w_{co-occ}(e_k, e_l))$$

- Sample *nb* local **environments** of *s* length for each event by randomly choosing neighbours in the event graph with probability $p(e_l)$
- Sampling equally from the set of **past** (predecessors) and **future** (successor) adjacent events

Identifies similarity between different events/nodes, which may be active at different times, but influence a similar set of nodes in the future

Event embedding

Parameters

- *α* balance parameter between temporal and topological contribution
- *d* number of embedding dimensions
- s and nb context parameters for environment sampling

Weg2Vec - embedding

Embedding time & structure

Membership in mesoscale structures

Weg2Vec - stability

Embedding dimension

- should high enough to capture correlations
- should be low enough to avoid redundancies in the embeddings
- we measure the entropy of euclidean distances between nodes while increasing the dimensions
- once the number of dimensions reaches its optimum nodes will stabilise and entropy becomes constant

 $\alpha = 0.5 \qquad \qquad d = 20$

Weg2Vec - evaluation

Pearson's correlation coefficients between similarity measures: the **time difference** (in temporal network) and the **euclidean distance** (in embedding) among randomly selected pairs and pairs of adjacent events.

Network	Random corr.	Linked corr.
Conference	0.36±0.01	0.52±0.02
Hospital	0.69±0.02	0.73±0.01
High School	0.40±0.02	0.61±0.01
Primary School	0.34±0.01	0.59±0.01

The method simultaneously captures structural and temporal correlations between events

Weg2Vec - prediction of epidemic size

- 1. Take a deterministic SI process (β =1)
- 2. Simulate it on the temporal network starting from each event
- 3. Measure the final epidemic size in each case
- 4. Take the embedding network (d=opt, s=nb=10, $\alpha=0.5$)
- 5. Train a linear regression model on the embedded coordinates and infection sizes of events
- 6. Predict the size of epidemic spreading

Data	dimension	r ²
Conference	(d=20)	0.79 ± 0.01
Hospital	(d=14)	$0.53_{\pm}0.03$
High School	(d=26)	$0.56_{\pm}0.02$
Primary School	(d=24)	0.68 ± 0.02

Comparison with other methods

- STWalk¹ is designed to learn trajectory representations of nodes in temporal graphs by operating with two graph representations: a graph at a given time step and a graph from past time steps. It performs random walks
- Online-Node2vec² is a node embedding method updating coordinates each time a new event appears in a temporal network. It also applies random walks to generate environments

[1] Pandhre, S., Mittal, H., Gupta, M., & Balasubramanian, V. N. (2018, January). *Proceedings of the ACM India Joint International Conference on Data Science and Management of Data* (pp. 210-219). ACM.

[2] Béres, F., Pálovics, R., Kelen, D., Szabó, D., & Benczúr, A. 7th International Conference on Complex Networks and Their Applications, Cambridge.

Conclusions

Event graphs: static lossless representations of temporal networks

by mapping them as weighted directed acyclic graphs

Weg2Vec - event embedding of temporal networks

- Identification of nodes which influence similar set of other nodes at different times
- Low-dimensional representations based on neighbourhood sampling
- Capture temporal correlations and mesoscale structures

Efficient prediction of spreading outcome

• Outperforming other temporal networks embedding methods

Mapping temporal-network percolation to weighted, static event graphs

Mikko Kivelä, Jordan Cambe, Jari Saramäki & Márton Karsai 🖂

Scientific Reports8, Article number: 12357 (2018)Cite this article1754Accesses10Citations38AltmetricMetrics

Collaborators

Mikko Kivelä Aalto University

Jari Saramäki Aalto University

Maddalena Toricelli **ISI** Torino Uni Bologna

Laetitia Gauvin **ISI** Torino

Jordan Cambe **ENS** Lyon

Mapping temporal-network percolation to weighted, static event graphs

Mikko Kivelä, Jordan Cambe, Jari Saramäki & Márton Karsai 🖂

Scientific Reports 8, Article number: 12357 (2018) | Cite this article 1754 Accesses | 10 Citations | 38 Altmetric | Metrics

Department of **CENTRAL** Network and **Data Science**

EUROPEAN UNIVERSITY

weg2vec: Event embedding for temporal networks

Maddalena Torricelli, Márton Karsai & Laetitia Gauvin 🖂

Scientific Reports 10, Article number: 7164 (2020) Cite this article

1033 Accesses **0** Altmetric Metrics

karsaim@ceu.edu @MartonKarsai

Template slide 1

EFFECT OF THE NEIGHBORHOOD SAMPLING

nb= number of environments, s= environment size -> parameters strongly coupled

Template slide 1

EFFECT OF THE DIMENSION

 α lower values=similarity mainly based on co-occurences