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Temporal Networks
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• Interactions between entities are not present always but varying in time (Holme, Saramaki 2012)

• Calls, SMS, f2f, @mentions, collaborations, transportation networks…



Representation of temporal networks
1. Temporal Graph: 

• V: set of vertices
• E: set of edges
• Te={t1, t2,…, tn}: set of times when edge e is active

Gt = (V,E, Te)
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Fig. 3. A temporal network of zebras. Each horizontal line corresponds to one individual. The contacts between individuals are not shown; instead the
clusters as identified by the algorithm in Tantipathananandh et al. are illustrated by the colored squares.
Source: The figure is adapted from Tantipathananandh et al. [68]. The data comes from Sundaresan et al. [69].
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Fig. 4. Contact sequences and interval graphs. This figure illustrates the two fundamental temporal network representations in our discussion—contact
sequences (a) and interval graphs (b). The times of the contacts are states next to the edges. We also visualize the contact timelines (gray bars). In these the
contacts are marked by black bars or fields and the time lines range from t = 0 to t = 20 (with t = 0 to the left). In the former, contacts occur at points
in time whereas the contacts are extended in time in the latter. Timeline plots like those in Figs 1(b) and 2(b) are another suitable depiction of contact
sequences, for contact graphs such illustrations are not as readable.

evolutionary effects might not require the temporal network approach (at least in their traditional sense, cf. Ref. [75]). For
faster changes of the interaction patterns, in response to environmental changes, yearly and circadian cycles, etc., temporal
networks could provide a useful framework.

In population biology one also studies proximity and mobility networks of animals [68,69,76–78]; see Fig. 3. These
are, just like human proximity networks, prime examples of systems where the temporal dimension can affect dynamical
systems like disease and information spreading, and are thus apt for temporal-network analysis. In Ref. [79], dynamical
patterns of cattle movement were analyzed with temporal networks where vertices represent premises, and edges cattle
movement among premises.

2.9. Other systems

The above-mentioned systems are far from the only potential applications of temporal network modeling. Probably, the
easiest way of finding more examples is to look at the complex-network literature and to ask oneself if a certain system
has enough temporal structure for a temporal-network approach. An early paper on time-evolving network considered
supply networks for the manufacturing industry [80]. There are likely other economic systems that would benefit from
temporal network modeling. Networks that, like citation networks [81] are normally thought of as strictly growing, could
show temporal effects in the growth that could benefit from being studied in a temporal-network framework.

3. Preliminaries

The temporal networkswe consider in this review can be divided into two (rough and overlapping) classes corresponding
to the two types of representations illustrated in Fig. 4. In the first representation (Fig. 4(a)) there is a set of N vertices V
interacting with each other at certain times, and the durations of the interactions are negligible. In this case, the system can
be represented by a contact sequence—a set of C contacts, triples (i, j, t) where i, j 2 V and t denotes time. Equivalently, one
can represent the system by V , a set of M edges (pairs of vertices) E, and, for e 2 E, a non-empty set of times of contacts
Te = {t1, . . . , tn}. Typical systems suitable to be represented as a contact sequence include communication data (sets of
e-mails, phone calls, text messages, etc.), and physical proximity data where the duration of the contact is less important
(e.g. sexual networks). Commonly, authors group the contacts happening at the same discrete timestep into one graph
(or ‘‘graphlet’’ in the terminology of Ref. [82]) and present the temporal network as a time sequence of graphs. Since this
representationmakes it tempting to think of the temporal-network structure as an evolving static network structure (which
misses many of the unique points of temporal networks), we prefer contact sequences. Furthermore, in many real datasets
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Representation of temporal networks
1. Temporal Graph: 

• V: set of vertices
• E: set of edges
• Te={t1, t2,…, tn}: set of times when edge e is active

Gt = (V,E, Te)

2. Contact sequence
(Similar representation is called link streams, (Latapy et al. 2018) 

where 
• T is the set of time stamps
• V is the set of interacting entities
• Ae are event attribute set e.g. duration, cost, etc,
• L is a location set

• sequence of events ev ∈ E 

E ⇢ T ⇥ V ⇥ V (⇥
Y

i

Ae
i ⇥ L)
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can represent the system by V , a set of M edges (pairs of vertices) E, and, for e 2 E, a non-empty set of times of contacts
Te = {t1, . . . , tn}. Typical systems suitable to be represented as a contact sequence include communication data (sets of
e-mails, phone calls, text messages, etc.), and physical proximity data where the duration of the contact is less important
(e.g. sexual networks). Commonly, authors group the contacts happening at the same discrete timestep into one graph
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2. Contact sequence
(Similar representation is called link streams, (Latapy et al. 2018) 

E ⇢ T ⇥ V ⇥ V (⇥
Y

i

Ae
i ⇥ L)

3. Graphlet or snapshot representation
• Set of graphs representing aggregated interactions happening at 

the same time or interval 
• Can be represented as a dynamic adjacency matrix Aij(t)
• Can be represented as a multiplex network
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Fig. 2. The figure illustrates five representations of the same temporal network (of the contact sequence type). Panel (a) shows
a node-centric time line, where a horizontal line represents a contact between two connected individual at the time given by
the x-axis. Panel (b) shows a time line of the contacts focusing on links (pairs of individuals). Panel (c) shows a time-stamp
decorated, aggregated graph. The numbers of the links denotes the contacts between the nodes. Panel (d) shows a time-node
graph (where one assumes spreading cannot occur across more than one contact per time step). Three of the 32 time nodes are
labeled. Panel (e) shows a graph sequence representation.

in time a dynamic network (we are well aware of the con-
fusion of terminology – sometimes what we call temporal
networks are called dynamic networks). Isn’t this situa-
tion just the same as any temporal network? To some
extent, the answer is like in the previous section – if the
dynamic systems on the network are faster than the con-
tact dynamics, and the network at any given moment of
time is non-trivial, then yes. However, there is also a sub-
tle difference of the research questions about them. For
dynamic networks, the focus is typically on one class of
networks (say protein interaction networks) and questions
concern the structure of this network class, how the struc-
ture has evolved and how it affects dynamic systems on
the network. Temporal networks are typically more data
oriented – researchers investigate a data set, its structures,
and how e.g. epidemic outbreaks would behave on it. Then
one asks how these observations generalize by comparing
results for different data sets. Perhaps, this slightly differ-
ent approach comes from that there are no semi-universal
structures in temporal networks that involve both the time
and topology (as opposed to scale-free degree distributions
in network theory [2,126] or bursty behavior of human
activity [70]).

3.1.4 Time-node graphs

Another way of representing temporal networks, akin to
multilayer networks, is to make a network of time nodes
(sometimes called the “static expansion” of a temporal
network [101]) – representing the original node at a time.
This type of network can be practical since it is straight-
forward to apply static network methods also over the
time dimension [31,129,130]. Eventually one usually needs
to map the time nodes back to the original nodes; maybe
one exception could be a certain year’s edition of an an-

nual event (cf. “NetSci 2015” – a conference during which
parts of this paper was written). (A time-node represen-
tation of our example network is shown in Fig. 2d.)

3.1.5 Time series of contacts on a static graph

Contact sequences correspond, to some extent, to link lists
in static network (a 2×M matrix of the two nodes of every
link in the network; where M is the number of links). The
other important scalable data structure for static graphs –
adjacency lists (listing node-by-node all the neighbors of a
node) – corresponds to assigning a time series of contacts
to the links of a static graph. The advantage of thinking
about temporal networks in this way is primarily visual
– one can plot the underlying graph with all the power-
ful graph layout algorithms designed for static networks,
one can even plot the time series of contacts as a time
line. In practice, this only works for very small temporal
networks, both because the underlying graph tend to be
rather dense in empirical data, and because there is little
space to visualize the contact time series (see Fig. 2c for
an example).

3.1.6 Time-lines of contacts

Another, primarily visual, type of representation is a time
line of contacts. Graphically, one would let one dimension
represent time and one dimension the set of nodes. Then
one connects two nodes by a line at the times of their con-
tacts (Fig. 2a). The advantage with this representation is
that the time-respecting paths (sequences of contacts of
increasing times) between nodes are very easy to iden-
tify – these are all paths that does not turn backwards in
the time dimension. The disadvantage is, not surprisingly,
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in time a dynamic network (we are well aware of the con-
fusion of terminology – sometimes what we call temporal
networks are called dynamic networks). Isn’t this situa-
tion just the same as any temporal network? To some
extent, the answer is like in the previous section – if the
dynamic systems on the network are faster than the con-
tact dynamics, and the network at any given moment of
time is non-trivial, then yes. However, there is also a sub-
tle difference of the research questions about them. For
dynamic networks, the focus is typically on one class of
networks (say protein interaction networks) and questions
concern the structure of this network class, how the struc-
ture has evolved and how it affects dynamic systems on
the network. Temporal networks are typically more data
oriented – researchers investigate a data set, its structures,
and how e.g. epidemic outbreaks would behave on it. Then
one asks how these observations generalize by comparing
results for different data sets. Perhaps, this slightly differ-
ent approach comes from that there are no semi-universal
structures in temporal networks that involve both the time
and topology (as opposed to scale-free degree distributions
in network theory [2,126] or bursty behavior of human
activity [70]).

3.1.4 Time-node graphs

Another way of representing temporal networks, akin to
multilayer networks, is to make a network of time nodes
(sometimes called the “static expansion” of a temporal
network [101]) – representing the original node at a time.
This type of network can be practical since it is straight-
forward to apply static network methods also over the
time dimension [31,129,130]. Eventually one usually needs
to map the time nodes back to the original nodes; maybe
one exception could be a certain year’s edition of an an-

nual event (cf. “NetSci 2015” – a conference during which
parts of this paper was written). (A time-node represen-
tation of our example network is shown in Fig. 2d.)

3.1.5 Time series of contacts on a static graph

Contact sequences correspond, to some extent, to link lists
in static network (a 2×M matrix of the two nodes of every
link in the network; where M is the number of links). The
other important scalable data structure for static graphs –
adjacency lists (listing node-by-node all the neighbors of a
node) – corresponds to assigning a time series of contacts
to the links of a static graph. The advantage of thinking
about temporal networks in this way is primarily visual
– one can plot the underlying graph with all the power-
ful graph layout algorithms designed for static networks,
one can even plot the time series of contacts as a time
line. In practice, this only works for very small temporal
networks, both because the underlying graph tend to be
rather dense in empirical data, and because there is little
space to visualize the contact time series (see Fig. 2c for
an example).

3.1.6 Time-lines of contacts

Another, primarily visual, type of representation is a time
line of contacts. Graphically, one would let one dimension
represent time and one dimension the set of nodes. Then
one connects two nodes by a line at the times of their con-
tacts (Fig. 2a). The advantage with this representation is
that the time-respecting paths (sequences of contacts of
increasing times) between nodes are very easy to iden-
tify – these are all paths that does not turn backwards in
the time dimension. The disadvantage is, not surprisingly,
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Time-respecting paths
• Temporal equivalent of topological path in static graphs
• Consider a temporal contact network (for simplicity without durations)
• Any path between node has to respect the timing and ordering of events!

Definition
• Time-respecting path between node a and b is a set of 

events

such that t1<t2<…<tn and consecutive events are adjacent
(i.e. time ordered and share at least one node)

{(a, v, t1), (v, w, t2), . . . , (y, b, tn)}
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Definition
• Time-respecting path between node a and b is a set of 

events

such that t1<t2<…<tn and consecutive events are adjacent
(i.e. time ordered and share at least one node)

{(a, v, t1), (v, w, t2), . . . , (y, b, tn)}

• Temporal equivalent of topological path in static graphs
• Consider a temporal contact network (for simplicity without durations)
• Any path between node has to respect the timing and ordering of events!

Time-respecting paths



Weighted event graphs
Temporal networks

Let us consider a temporal network G = (V,E, T )

2

edges defined as a set of events E ⇢ V ⇥ V ⇥ [0, T ] over a
time period T . For simplicity, we allow no self-edges or si-
multaneous events of the same node. Two events e = (u, v, t)
and e0 = (u0, v0, t0) are considered adjacent so that e ! e0 if
they share at least one node and t < t0. This definition of the
adjacency is directed and preserves the arrow of time. Fur-
ther, two adjacent events are considered �t-adjacent if their
time difference is 0 < t0 � t < �t. The weighted event graph
representation of a temporal network G is defined as the graph
D = (E,ED, w) where the set of nodes E is the set of events
in G and the edges in eD 2 ED represent the adjacency of the
events eD = e ! e0 with weights defined as w(eD) = t0 � t.
Note that D contains all time-respecting paths in the network.
For paths where the longest allowed waiting time is �t, we
can get the subgraph D�t by thresholding D so that only links
with w  �t are retained. This allows us to sweep through
the whole range of �t with minimal computational cost (for
details on algorithms, see Supplementary Informations (SI)).

The �t-thresholded event graph D�t is a superposition of
the time-respecting paths that a �t-limited spreading process
may follow. Therefore, its structure tells if the process can
percolate the network. A closer look at the problem reveals
that here, the concept of percolation is more complex than for
static networks. Let us first look at the component structure
of D�t. It is directed, but may only contain weakly connected
components; there are no strongly connected components be-
cause D�t is by definition acyclic. Each event graph node can
be associated with an in-component and out-component that
contain the events on up- and downstream temporal paths;
note that these components naturally overlap for different
event graph nodes. In the following, we will limit our anal-
ysis to weakly connected components of �t because of their
uniqueness, unless stated otherwise; note that for spreading
processes, the existence of a weakly connected component is
a necessary but not a sufficient condition for percolation.

Let us next address the question of connected component
size. In percolation analysis, the relative size of the largest
connected component is defined as the order parameter, while
the quantity equivalent to magnetic susceptibility is often
identified as the average size of the other connected compo-
nents. Here, there are three ways of measuring the size of
a component of D�t. (1) The most straightforward way is
to count the number of event graph nodes SE(E0) = |E0|
in a connected component E0 ✓ E of D�t. This is the
same as the maximal of events on the component’s time-
respecting paths that any spreading process can follow. (2)
One can count the number of nodes of the temporal network
SG(E0) = |

S
(u,v,t)2E0(u [ v)| that are covered by the event

graph component E0. This is an upper bound for the num-
ber of temporal network nodes that any spreading process can
reach by following the component’s time-respecting paths. (3)
One can measure the lifetime of the event graph component
SLT (E0) = (max(u,v,t)2E0 t � min(u,v,t)2E0 t). This is the
maximum possible lifetime of any spreading process on the
component. Note that there may be several co-existing com-
ponents with long (or even infinite) lifetimes; frequent and

sustained contacts between a small number of nodes can al-
ready give rise to a long-lived component.

With the above measures, we can define the order parameter
and susceptibility as
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where nS is the number of components of size S⇤, and N⇤ =P
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nSS⇤ for the chosen definition of size ⇤ 2 {E,G,LT}.
Note that the above picture has a clear link to directed per-

colation [35], where there are two correlation lengths, tempo-
ral and spatial, characterizing correlations parallel and perpen-
dicular to the directed lattice. In our case, the arrow of time
provides the direction. However, instead of the regular lattice
of the usual directed-percolation picture, our process unfolds
on a highly irregular structure determined by the set of events
that take place at each moment in time. In this setting ⇢E gives
the probability that a randomly selected event in D�t belongs
to a structurally percolating infinite cluster, while ⇢LT is the
typical temporal correlation length for a given �t. Note that
in our case these correspond to two different order parameter
definitions as the largest and longest components might not be
the same, as they typically are in directed percolation.

To explore how �t controls connectivity in temporal net-
works, we introduce a simple toy model. We define an ensem-
ble of temporal networks Gp,r(n, k,↵) where the topology is
that of an Erdős-Rényi (E-R) random graph with n nodes and
average degree k, and events are generated on each link by a
Poisson process with ↵ events per link on average. We set the
observation period T long enough so that �t ⌧ T and ↵ ⌧ T .

In this model, there is a transition from the disconnected
to the connected phase when the independent Poisson events
become �t-adjacent and form a giant weakly connected com-
ponent in D�t. In terms of degree, a lower bound for this
critical point can be estimated as the point where the average
out-degree of the event graph becomes hkout

D�t
i = 1. In the un-

derlying E-R network, each edge is adjacent to 2(k � 1) + 1
edges (including the edge itself), and therefore the average
out-degree of D�t is hkoutD�t

i = ↵�t [2(k � 1) + 1]. The con-
dition for the critical point can then be written as
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This theoretical line �tc(k) is shown together with results
of simulations in Fig.2.a, using the number of events as the
measure for the fractional size of the largest component SE .
�tc(k) is seen to separate the percolating and non-percolating
regimes in the simulation fairly well. Fig.2.b and c show
the relative largest component sizes (i.e. the order parame-
ter) measured in terms of temporal-network nodes (SG) and
component lifetime (SLT ); there is indication of percolation
transition happening close to the theoretical line �tc(k) com-
puted for the number of events. Note that this cannot be ex-
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in G and the edges in eD 2 ED represent the adjacency of the
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can get the subgraph D�t by thresholding D so that only links
with w  �t are retained. This allows us to sweep through
the whole range of �t with minimal computational cost (for
details on algorithms, see Supplementary Informations (SI)).
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of D�t. It is directed, but may only contain weakly connected
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uniqueness, unless stated otherwise; note that for spreading
processes, the existence of a weakly connected component is
a necessary but not a sufficient condition for percolation.

Let us next address the question of connected component
size. In percolation analysis, the relative size of the largest
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the quantity equivalent to magnetic susceptibility is often
identified as the average size of the other connected compo-
nents. Here, there are three ways of measuring the size of
a component of D�t. (1) The most straightforward way is
to count the number of event graph nodes SE(E0) = |E0|
in a connected component E0 ✓ E of D�t. This is the
same as the maximal of events on the component’s time-
respecting paths that any spreading process can follow. (2)
One can count the number of nodes of the temporal network
SG(E0) = |
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graph component E0. This is an upper bound for the num-
ber of temporal network nodes that any spreading process can
reach by following the component’s time-respecting paths. (3)
One can measure the lifetime of the event graph component
SLT (E0) = (max(u,v,t)2E0 t � min(u,v,t)2E0 t). This is the
maximum possible lifetime of any spreading process on the
component. Note that there may be several co-existing com-
ponents with long (or even infinite) lifetimes; frequent and

sustained contacts between a small number of nodes can al-
ready give rise to a long-lived component.

With the above measures, we can define the order parameter
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ral and spatial, characterizing correlations parallel and perpen-
dicular to the directed lattice. In our case, the arrow of time
provides the direction. However, instead of the regular lattice
of the usual directed-percolation picture, our process unfolds
on a highly irregular structure determined by the set of events
that take place at each moment in time. In this setting ⇢E gives
the probability that a randomly selected event in D�t belongs
to a structurally percolating infinite cluster, while ⇢LT is the
typical temporal correlation length for a given �t. Note that
in our case these correspond to two different order parameter
definitions as the largest and longest components might not be
the same, as they typically are in directed percolation.

To explore how �t controls connectivity in temporal net-
works, we introduce a simple toy model. We define an ensem-
ble of temporal networks Gp,r(n, k,↵) where the topology is
that of an Erdős-Rényi (E-R) random graph with n nodes and
average degree k, and events are generated on each link by a
Poisson process with ↵ events per link on average. We set the
observation period T long enough so that �t ⌧ T and ↵ ⌧ T .

In this model, there is a transition from the disconnected
to the connected phase when the independent Poisson events
become �t-adjacent and form a giant weakly connected com-
ponent in D�t. In terms of degree, a lower bound for this
critical point can be estimated as the point where the average
out-degree of the event graph becomes hkout
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edges (including the edge itself), and therefore the average
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This theoretical line �tc(k) is shown together with results
of simulations in Fig.2.a, using the number of events as the
measure for the fractional size of the largest component SE .
�tc(k) is seen to separate the percolating and non-percolating
regimes in the simulation fairly well. Fig.2.b and c show
the relative largest component sizes (i.e. the order parame-
ter) measured in terms of temporal-network nodes (SG) and
component lifetime (SLT ); there is indication of percolation
transition happening close to the theoretical line �tc(k) com-
puted for the number of events. Note that this cannot be ex-
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and e0 = (u0, v0, t0) are considered adjacent so that e ! e0 if
they share at least one node and t < t0. This definition of the
adjacency is directed and preserves the arrow of time. Fur-
ther, two adjacent events are considered �t-adjacent if their
time difference is 0 < t0 � t < �t. The weighted event graph
representation of a temporal network G is defined as the graph
D = (E,ED, w) where the set of nodes E is the set of events
in G and the edges in eD 2 ED represent the adjacency of the
events eD = e ! e0 with weights defined as w(eD) = t0 � t.
Note that D contains all time-respecting paths in the network.
For paths where the longest allowed waiting time is �t, we
can get the subgraph D�t by thresholding D so that only links
with w  �t are retained. This allows us to sweep through
the whole range of �t with minimal computational cost (for
details on algorithms, see Supplementary Informations (SI)).

The �t-thresholded event graph D�t is a superposition of
the time-respecting paths that a �t-limited spreading process
may follow. Therefore, its structure tells if the process can
percolate the network. A closer look at the problem reveals
that here, the concept of percolation is more complex than for
static networks. Let us first look at the component structure
of D�t. It is directed, but may only contain weakly connected
components; there are no strongly connected components be-
cause D�t is by definition acyclic. Each event graph node can
be associated with an in-component and out-component that
contain the events on up- and downstream temporal paths;
note that these components naturally overlap for different
event graph nodes. In the following, we will limit our anal-
ysis to weakly connected components of �t because of their
uniqueness, unless stated otherwise; note that for spreading
processes, the existence of a weakly connected component is
a necessary but not a sufficient condition for percolation.

Let us next address the question of connected component
size. In percolation analysis, the relative size of the largest
connected component is defined as the order parameter, while
the quantity equivalent to magnetic susceptibility is often
identified as the average size of the other connected compo-
nents. Here, there are three ways of measuring the size of
a component of D�t. (1) The most straightforward way is
to count the number of event graph nodes SE(E0) = |E0|
in a connected component E0 ✓ E of D�t. This is the
same as the maximal of events on the component’s time-
respecting paths that any spreading process can follow. (2)
One can count the number of nodes of the temporal network
SG(E0) = |
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graph component E0. This is an upper bound for the num-
ber of temporal network nodes that any spreading process can
reach by following the component’s time-respecting paths. (3)
One can measure the lifetime of the event graph component
SLT (E0) = (max(u,v,t)2E0 t � min(u,v,t)2E0 t). This is the
maximum possible lifetime of any spreading process on the
component. Note that there may be several co-existing com-
ponents with long (or even infinite) lifetimes; frequent and

sustained contacts between a small number of nodes can al-
ready give rise to a long-lived component.

With the above measures, we can define the order parameter
and susceptibility as
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Note that the above picture has a clear link to directed per-

colation [35], where there are two correlation lengths, tempo-
ral and spatial, characterizing correlations parallel and perpen-
dicular to the directed lattice. In our case, the arrow of time
provides the direction. However, instead of the regular lattice
of the usual directed-percolation picture, our process unfolds
on a highly irregular structure determined by the set of events
that take place at each moment in time. In this setting ⇢E gives
the probability that a randomly selected event in D�t belongs
to a structurally percolating infinite cluster, while ⇢LT is the
typical temporal correlation length for a given �t. Note that
in our case these correspond to two different order parameter
definitions as the largest and longest components might not be
the same, as they typically are in directed percolation.

To explore how �t controls connectivity in temporal net-
works, we introduce a simple toy model. We define an ensem-
ble of temporal networks Gp,r(n, k,↵) where the topology is
that of an Erdős-Rényi (E-R) random graph with n nodes and
average degree k, and events are generated on each link by a
Poisson process with ↵ events per link on average. We set the
observation period T long enough so that �t ⌧ T and ↵ ⌧ T .

In this model, there is a transition from the disconnected
to the connected phase when the independent Poisson events
become �t-adjacent and form a giant weakly connected com-
ponent in D�t. In terms of degree, a lower bound for this
critical point can be estimated as the point where the average
out-degree of the event graph becomes hkout
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edges (including the edge itself), and therefore the average
out-degree of D�t is hkoutD�t
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dition for the critical point can then be written as
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This theoretical line �tc(k) is shown together with results
of simulations in Fig.2.a, using the number of events as the
measure for the fractional size of the largest component SE .
�tc(k) is seen to separate the percolating and non-percolating
regimes in the simulation fairly well. Fig.2.b and c show
the relative largest component sizes (i.e. the order parame-
ter) measured in terms of temporal-network nodes (SG) and
component lifetime (SLT ); there is indication of percolation
transition happening close to the theoretical line �tc(k) com-
puted for the number of events. Note that this cannot be ex-
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multaneous events of the same node. Two events e = (u, v, t)
and e0 = (u0, v0, t0) are considered adjacent so that e ! e0 if
they share at least one node and t < t0. This definition of the
adjacency is directed and preserves the arrow of time. Fur-
ther, two adjacent events are considered �t-adjacent if their
time difference is 0 < t0 � t < �t. The weighted event graph
representation of a temporal network G is defined as the graph
D = (E,ED, w) where the set of nodes E is the set of events
in G and the edges in eD 2 ED represent the adjacency of the
events eD = e ! e0 with weights defined as w(eD) = t0 � t.
Note that D contains all time-respecting paths in the network.
For paths where the longest allowed waiting time is �t, we
can get the subgraph D�t by thresholding D so that only links
with w  �t are retained. This allows us to sweep through
the whole range of �t with minimal computational cost (for
details on algorithms, see Supplementary Informations (SI)).

The �t-thresholded event graph D�t is a superposition of
the time-respecting paths that a �t-limited spreading process
may follow. Therefore, its structure tells if the process can
percolate the network. A closer look at the problem reveals
that here, the concept of percolation is more complex than for
static networks. Let us first look at the component structure
of D�t. It is directed, but may only contain weakly connected
components; there are no strongly connected components be-
cause D�t is by definition acyclic. Each event graph node can
be associated with an in-component and out-component that
contain the events on up- and downstream temporal paths;
note that these components naturally overlap for different
event graph nodes. In the following, we will limit our anal-
ysis to weakly connected components of �t because of their
uniqueness, unless stated otherwise; note that for spreading
processes, the existence of a weakly connected component is
a necessary but not a sufficient condition for percolation.

Let us next address the question of connected component
size. In percolation analysis, the relative size of the largest
connected component is defined as the order parameter, while
the quantity equivalent to magnetic susceptibility is often
identified as the average size of the other connected compo-
nents. Here, there are three ways of measuring the size of
a component of D�t. (1) The most straightforward way is
to count the number of event graph nodes SE(E0) = |E0|
in a connected component E0 ✓ E of D�t. This is the
same as the maximal of events on the component’s time-
respecting paths that any spreading process can follow. (2)
One can count the number of nodes of the temporal network
SG(E0) = |
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(u,v,t)2E0(u [ v)| that are covered by the event

graph component E0. This is an upper bound for the num-
ber of temporal network nodes that any spreading process can
reach by following the component’s time-respecting paths. (3)
One can measure the lifetime of the event graph component
SLT (E0) = (max(u,v,t)2E0 t � min(u,v,t)2E0 t). This is the
maximum possible lifetime of any spreading process on the
component. Note that there may be several co-existing com-
ponents with long (or even infinite) lifetimes; frequent and

sustained contacts between a small number of nodes can al-
ready give rise to a long-lived component.

With the above measures, we can define the order parameter
and susceptibility as
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colation [35], where there are two correlation lengths, tempo-
ral and spatial, characterizing correlations parallel and perpen-
dicular to the directed lattice. In our case, the arrow of time
provides the direction. However, instead of the regular lattice
of the usual directed-percolation picture, our process unfolds
on a highly irregular structure determined by the set of events
that take place at each moment in time. In this setting ⇢E gives
the probability that a randomly selected event in D�t belongs
to a structurally percolating infinite cluster, while ⇢LT is the
typical temporal correlation length for a given �t. Note that
in our case these correspond to two different order parameter
definitions as the largest and longest components might not be
the same, as they typically are in directed percolation.

To explore how �t controls connectivity in temporal net-
works, we introduce a simple toy model. We define an ensem-
ble of temporal networks Gp,r(n, k,↵) where the topology is
that of an Erdős-Rényi (E-R) random graph with n nodes and
average degree k, and events are generated on each link by a
Poisson process with ↵ events per link on average. We set the
observation period T long enough so that �t ⌧ T and ↵ ⌧ T .

In this model, there is a transition from the disconnected
to the connected phase when the independent Poisson events
become �t-adjacent and form a giant weakly connected com-
ponent in D�t. In terms of degree, a lower bound for this
critical point can be estimated as the point where the average
out-degree of the event graph becomes hkout
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edges (including the edge itself), and therefore the average
out-degree of D�t is hkoutD�t

i = ↵�t [2(k � 1) + 1]. The con-
dition for the critical point can then be written as
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of simulations in Fig.2.a, using the number of events as the
measure for the fractional size of the largest component SE .
�tc(k) is seen to separate the percolating and non-percolating
regimes in the simulation fairly well. Fig.2.b and c show
the relative largest component sizes (i.e. the order parame-
ter) measured in terms of temporal-network nodes (SG) and
component lifetime (SLT ); there is indication of percolation
transition happening close to the theoretical line �tc(k) com-
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multaneous events of the same node. Two events e = (u, v, t)
and e0 = (u0, v0, t0) are considered adjacent so that e ! e0 if
they share at least one node and t < t0. This definition of the
adjacency is directed and preserves the arrow of time. Fur-
ther, two adjacent events are considered �t-adjacent if their
time difference is 0 < t0 � t < �t. The weighted event graph
representation of a temporal network G is defined as the graph
D = (E,ED, w) where the set of nodes E is the set of events
in G and the edges in eD 2 ED represent the adjacency of the
events eD = e ! e0 with weights defined as w(eD) = t0 � t.
Note that D contains all time-respecting paths in the network.
For paths where the longest allowed waiting time is �t, we
can get the subgraph D�t by thresholding D so that only links
with w  �t are retained. This allows us to sweep through
the whole range of �t with minimal computational cost (for
details on algorithms, see Supplementary Informations (SI)).

The �t-thresholded event graph D�t is a superposition of
the time-respecting paths that a �t-limited spreading process
may follow. Therefore, its structure tells if the process can
percolate the network. A closer look at the problem reveals
that here, the concept of percolation is more complex than for
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of D�t. It is directed, but may only contain weakly connected
components; there are no strongly connected components be-
cause D�t is by definition acyclic. Each event graph node can
be associated with an in-component and out-component that
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note that these components naturally overlap for different
event graph nodes. In the following, we will limit our anal-
ysis to weakly connected components of �t because of their
uniqueness, unless stated otherwise; note that for spreading
processes, the existence of a weakly connected component is
a necessary but not a sufficient condition for percolation.
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connected component is defined as the order parameter, while
the quantity equivalent to magnetic susceptibility is often
identified as the average size of the other connected compo-
nents. Here, there are three ways of measuring the size of
a component of D�t. (1) The most straightforward way is
to count the number of event graph nodes SE(E0) = |E0|
in a connected component E0 ✓ E of D�t. This is the
same as the maximal of events on the component’s time-
respecting paths that any spreading process can follow. (2)
One can count the number of nodes of the temporal network
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graph component E0. This is an upper bound for the num-
ber of temporal network nodes that any spreading process can
reach by following the component’s time-respecting paths. (3)
One can measure the lifetime of the event graph component
SLT (E0) = (max(u,v,t)2E0 t � min(u,v,t)2E0 t). This is the
maximum possible lifetime of any spreading process on the
component. Note that there may be several co-existing com-
ponents with long (or even infinite) lifetimes; frequent and

sustained contacts between a small number of nodes can al-
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colation [35], where there are two correlation lengths, tempo-
ral and spatial, characterizing correlations parallel and perpen-
dicular to the directed lattice. In our case, the arrow of time
provides the direction. However, instead of the regular lattice
of the usual directed-percolation picture, our process unfolds
on a highly irregular structure determined by the set of events
that take place at each moment in time. In this setting ⇢E gives
the probability that a randomly selected event in D�t belongs
to a structurally percolating infinite cluster, while ⇢LT is the
typical temporal correlation length for a given �t. Note that
in our case these correspond to two different order parameter
definitions as the largest and longest components might not be
the same, as they typically are in directed percolation.
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works, we introduce a simple toy model. We define an ensem-
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average degree k, and events are generated on each link by a
Poisson process with ↵ events per link on average. We set the
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ponent in D�t. In terms of degree, a lower bound for this
critical point can be estimated as the point where the average
out-degree of the event graph becomes hkout

D�t
i = 1. In the un-

derlying E-R network, each edge is adjacent to 2(k � 1) + 1
edges (including the edge itself), and therefore the average
out-degree of D�t is hkoutD�t

i = ↵�t [2(k � 1) + 1]. The con-
dition for the critical point can then be written as

kc =
(↵�t)�1 � 1

2
+ 1 and �tc =
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↵(2k � 1)
. (3)

This theoretical line �tc(k) is shown together with results
of simulations in Fig.2.a, using the number of events as the
measure for the fractional size of the largest component SE .
�tc(k) is seen to separate the percolating and non-percolating
regimes in the simulation fairly well. Fig.2.b and c show
the relative largest component sizes (i.e. the order parame-
ter) measured in terms of temporal-network nodes (SG) and
component lifetime (SLT ); there is indication of percolation
transition happening close to the theoretical line �tc(k) com-
puted for the number of events. Note that this cannot be ex-
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edges defined as a set of events E ⇢ V ⇥ V ⇥ [0, T ] over a
time period T . For simplicity, we allow no self-edges or si-
multaneous events of the same node. Two events e = (u, v, t)
and e0 = (u0, v0, t0) are considered adjacent so that e ! e0 if
they share at least one node and t < t0. This definition of the
adjacency is directed and preserves the arrow of time. Fur-
ther, two adjacent events are considered �t-adjacent if their
time difference is 0 < t0 � t < �t. The weighted event graph
representation of a temporal network G is defined as the graph
D = (E,ED, w) where the set of nodes E is the set of events
in G and the edges in eD 2 ED represent the adjacency of the
events eD = e ! e0 with weights defined as w(eD) = t0 � t.
Note that D contains all time-respecting paths in the network.
For paths where the longest allowed waiting time is �t, we
can get the subgraph D�t by thresholding D so that only links
with w  �t are retained. This allows us to sweep through
the whole range of �t with minimal computational cost (for
details on algorithms, see Supplementary Informations (SI)).

The �t-thresholded event graph D�t is a superposition of
the time-respecting paths that a �t-limited spreading process
may follow. Therefore, its structure tells if the process can
percolate the network. A closer look at the problem reveals
that here, the concept of percolation is more complex than for
static networks. Let us first look at the component structure
of D�t. It is directed, but may only contain weakly connected
components; there are no strongly connected components be-
cause D�t is by definition acyclic. Each event graph node can
be associated with an in-component and out-component that
contain the events on up- and downstream temporal paths;
note that these components naturally overlap for different
event graph nodes. In the following, we will limit our anal-
ysis to weakly connected components of �t because of their
uniqueness, unless stated otherwise; note that for spreading
processes, the existence of a weakly connected component is
a necessary but not a sufficient condition for percolation.

Let us next address the question of connected component
size. In percolation analysis, the relative size of the largest
connected component is defined as the order parameter, while
the quantity equivalent to magnetic susceptibility is often
identified as the average size of the other connected compo-
nents. Here, there are three ways of measuring the size of
a component of D�t. (1) The most straightforward way is
to count the number of event graph nodes SE(E0) = |E0|
in a connected component E0 ✓ E of D�t. This is the
same as the maximal of events on the component’s time-
respecting paths that any spreading process can follow. (2)
One can count the number of nodes of the temporal network
SG(E0) = |

S
(u,v,t)2E0(u [ v)| that are covered by the event

graph component E0. This is an upper bound for the num-
ber of temporal network nodes that any spreading process can
reach by following the component’s time-respecting paths. (3)
One can measure the lifetime of the event graph component
SLT (E0) = (max(u,v,t)2E0 t � min(u,v,t)2E0 t). This is the
maximum possible lifetime of any spreading process on the
component. Note that there may be several co-existing com-
ponents with long (or even infinite) lifetimes; frequent and

sustained contacts between a small number of nodes can al-
ready give rise to a long-lived component.

With the above measures, we can define the order parameter
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in our case these correspond to two different order parameter
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the same, as they typically are in directed percolation.

To explore how �t controls connectivity in temporal net-
works, we introduce a simple toy model. We define an ensem-
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that of an Erdős-Rényi (E-R) random graph with n nodes and
average degree k, and events are generated on each link by a
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Weg2Vec:
Event Embedding 
for 
Temporal Networks



Temporal network embedding
• Learn low-dimensional representations 
• Capture temporal and structural regularities in the network  
• Various applications: node classification, link prediction... 

… or the prediction of spreading outcome
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Weg2Vec pipeline
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Event graph representation
• Path (temporal) weight:
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Event graph representation
• Path (temporal) weight:

wpath(ek, el) = 1
1 + | tk − tl |

• Co-occurance (topological) 
weight:
wco−occ(ek, el)

• Number of co-occurance of δt 
adjacent events on the same pair 
of adjacent static links 

Event embedding



Weg2Vec pipeline

We rely on the static representations of the temporal networks to generate the contexts to 
be passed as input to Word2Vec 
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p(el) = αℱ(wpath(ek, el) + (1 − α)ℱ(wco−occ(ek, el))

• Sample nb local environments of s length for each event by randomly choosing neighbours in 
the event graph with probability p(el)

• Sampling equally from the set of past (predecessors) and future (successor) adjacent events

Event embedding

Identifies similarity between different events/nodes, which may be active at different times, 
but influence a similar set of nodes in the future 
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Skip-Gram model

Parameters
• α - balance parameter between temporal and topological contribution 
• d - number of embedding dimensions
• s and nb - context parameters for environment sampling
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Weg2Vec - stability
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We show results in Fig. 3 for two empirical networks using a balanced embedding with α = .0 5 in both cases. 
As we expected, the entropy decreases as we increase the number of dimensions. "is is due to stabilisation of the 
distribution of pairwise euclidean distances, which in turn gives us a hint on the optimal dimension at which the 
local neighbourhoods (as de#ned by the sampling) are well captured by the embedding. To select this optimal 
dimension, we identi#ed the lower bound at which entropy starts to $uctuate around a constant value (see 
Methods 4 and Supplementary Information). Note that to identify the optimal number of dimensions we have 
taken into account other algorithms37 as explained in the Supplementary Information. However, our #nal choice 
fell on the entropy based method we introduced above as it maintained a good trade-o% between the compactness 
(i.e. low dimensionality) and stability of the embedding. Other tested methods suggested an unrealistically high 
number of dimensions to be optimal, probably due to their incompatibility with the actual setting, as they were 
developed for word embedding problems.

��������������������������������������������������Ǥ� Beyond the demonstrated capacities of our 
model to capture the temporal ordering and the underlying mesoscopic structures, it may provide further useful 
information about the embedded events. As a temporal network embedding, it positions events in proximity with 
similar neighbourhoods. In other words, it can help to identify similar events maybe involving di%erent nodes 
at di%erent times, but in$uencing a similar set of other nodes via overlapping temporal paths. As a consequence, 
this information can be used to predict the outcome of information di%usion processes on temporal networks.

To explore this problem, we model a Susceptible-Infected (SI) process, which is the simplest schematic model 
of epidemic or information spreading (see Section Spreading Process in Methods). De#ned on networks, this 
model assumes that each node can be in one of two mutually exclusive states (susceptible (S) or infected (I)) at a 
given time. While initially each node is susceptible, infection can spread from a selected infected seed node/event 
via temporal interactions and can reach all other nodes via connected valid temporal paths. To obtain the 
expected outcome of SI process on a temporal network we took each event as the seed and simulated the spread-
ing on the empirical temporal network to measure the #nal epidemic size in each case. Note that our aim to 
investigate the #nal outcome of an epidemic di%ers from the one pursued with DyANE34. In our case, we are not 
interested in the status of the node time by time, but in the #nal outcome of the epidemic originated by a speci#c 
event. To test the versatility of our embedding method we trained a model using the embedded coordinates of 
events for epidemic size predictions and compared results directly to the corresponding simulated outcomes. We 
used linear regression to approximate the correspondence between the embedding coordinates of each event and 
the size of epidemic initiated from them. As the goodness of the prediction we simply computed the r2 scores 
between the predicted and simulated epidemic sizes. Note, that we tested more complicated non-linear models 
but obtained lower performance in prediction (not shown here). We report our results in Table 1, where we #xed 
the environment parameters s and nb both to 10 and chose the optimal embedding dimension for each real net-
work detected as we explained in Section E%ects of the dimension and of the neighbourhood sampling.

Figure 3. Entropy values with respect to d number of embedding dimensions for the conference (a) and the 
primary school (b) networks at α = .0 5. "e dash line represents the value ( =d 20 and 24 respectively for (a 
and b)) of the optimal embedding dimension in which stability is reached. "e blue line and the shaded area 
represent respectively the average and the variance among the samples we used for the analysis.

r2

Original Snapshot Timeline LinkData
Conference (d = 20) 0.79 ± 0.01 0.53 ± 0.04 0.66 ± 0.03 0.57 ± 0.01
Hospital (d = 14) 0.53 ± 0.03 0.11 ± 0.02 0.35 ± 0.06 0.50 ± 0.04
High School (d = 26) 0.56 ± 0.02 0.23 ± 0.01 0.53 ± 0.02 0.76 ± 0.04
Primary School (d = 24) 0.68 ± 0.02 0.12 ± 0.01 0.31 ± 0.02 0.55 ± 0.02

Table 1. R-squared values, r2 obtained between the simulated and predicted epidemics outcomes using 
embedding of the real empirical temporal networks and of the randomised model. We set the environment 
parameters s and nb both to 10. "e optimal embedding dimension were chosen as found in E%ects of the 
dimension and of the neighbourhood sampling.

Embedding dimension
• should high enough to capture correlations
• should be low enough to avoid redundancies in the embeddings
• we measure the entropy of euclidean distances between nodes while increasing the 

dimensions
• once the number of dimensions reaches its optimum nodes will stabilise and entropy 

becomes constant

Conference Primary school



Weg2Vec - evaluation
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Pearson's correlation coefficients between similarity measures: the time difference (in 
temporal network) and the euclidean distance (in embedding) among randomly selected 
pairs and pairs of adjacent events. 

The method simultaneously captures structural and temporal correlations 
between events 



Weg2Vec - prediction of epidemic size
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1. Take a deterministic SI process (β=1)

2. Simulate it on the temporal network starting from 
each event

3. Measure the final epidemic size in each case

4. Take the embedding network (d=opt, s=nb=10, 
α=0.5)

5. Train a linear regression model on the embedded 
coordinates and infection sizes of events

6. Predict the size of epidemic spreading
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We show results in Fig. 3 for two empirical networks using a balanced embedding with α = .0 5 in both cases. 
As we expected, the entropy decreases as we increase the number of dimensions. "is is due to stabilisation of the 
distribution of pairwise euclidean distances, which in turn gives us a hint on the optimal dimension at which the 
local neighbourhoods (as de#ned by the sampling) are well captured by the embedding. To select this optimal 
dimension, we identi#ed the lower bound at which entropy starts to $uctuate around a constant value (see 
Methods 4 and Supplementary Information). Note that to identify the optimal number of dimensions we have 
taken into account other algorithms37 as explained in the Supplementary Information. However, our #nal choice 
fell on the entropy based method we introduced above as it maintained a good trade-o% between the compactness 
(i.e. low dimensionality) and stability of the embedding. Other tested methods suggested an unrealistically high 
number of dimensions to be optimal, probably due to their incompatibility with the actual setting, as they were 
developed for word embedding problems.

��������������������������������������������������Ǥ� Beyond the demonstrated capacities of our 
model to capture the temporal ordering and the underlying mesoscopic structures, it may provide further useful 
information about the embedded events. As a temporal network embedding, it positions events in proximity with 
similar neighbourhoods. In other words, it can help to identify similar events maybe involving di%erent nodes 
at di%erent times, but in$uencing a similar set of other nodes via overlapping temporal paths. As a consequence, 
this information can be used to predict the outcome of information di%usion processes on temporal networks.

To explore this problem, we model a Susceptible-Infected (SI) process, which is the simplest schematic model 
of epidemic or information spreading (see Section Spreading Process in Methods). De#ned on networks, this 
model assumes that each node can be in one of two mutually exclusive states (susceptible (S) or infected (I)) at a 
given time. While initially each node is susceptible, infection can spread from a selected infected seed node/event 
via temporal interactions and can reach all other nodes via connected valid temporal paths. To obtain the 
expected outcome of SI process on a temporal network we took each event as the seed and simulated the spread-
ing on the empirical temporal network to measure the #nal epidemic size in each case. Note that our aim to 
investigate the #nal outcome of an epidemic di%ers from the one pursued with DyANE34. In our case, we are not 
interested in the status of the node time by time, but in the #nal outcome of the epidemic originated by a speci#c 
event. To test the versatility of our embedding method we trained a model using the embedded coordinates of 
events for epidemic size predictions and compared results directly to the corresponding simulated outcomes. We 
used linear regression to approximate the correspondence between the embedding coordinates of each event and 
the size of epidemic initiated from them. As the goodness of the prediction we simply computed the r2 scores 
between the predicted and simulated epidemic sizes. Note, that we tested more complicated non-linear models 
but obtained lower performance in prediction (not shown here). We report our results in Table 1, where we #xed 
the environment parameters s and nb both to 10 and chose the optimal embedding dimension for each real net-
work detected as we explained in Section E%ects of the dimension and of the neighbourhood sampling.

Figure 3. Entropy values with respect to d number of embedding dimensions for the conference (a) and the 
primary school (b) networks at α = .0 5. "e dash line represents the value ( =d 20 and 24 respectively for (a 
and b)) of the optimal embedding dimension in which stability is reached. "e blue line and the shaded area 
represent respectively the average and the variance among the samples we used for the analysis.

r2

Original Snapshot Timeline LinkData
Conference (d = 20) 0.79 ± 0.01 0.53 ± 0.04 0.66 ± 0.03 0.57 ± 0.01
Hospital (d = 14) 0.53 ± 0.03 0.11 ± 0.02 0.35 ± 0.06 0.50 ± 0.04
High School (d = 26) 0.56 ± 0.02 0.23 ± 0.01 0.53 ± 0.02 0.76 ± 0.04
Primary School (d = 24) 0.68 ± 0.02 0.12 ± 0.01 0.31 ± 0.02 0.55 ± 0.02

Table 1. R-squared values, r2 obtained between the simulated and predicted epidemics outcomes using 
embedding of the real empirical temporal networks and of the randomised model. We set the environment 
parameters s and nb both to 10. "e optimal embedding dimension were chosen as found in E%ects of the 
dimension and of the neighbourhood sampling.

r2dimension



Comparison with other methods
• STWalk1 is designed to learn trajectory representations of nodes in temporal graphs by operating with 

two graph representations: a graph at a given time step and a graph from past time steps. It performs 
random walks  

• Online-Node2vec2 is a node embedding method updating coordinates each time a new event 
appears in a temporal network. It also applies random walks to generate environments 

[1] Pandhre, S., Mittal, H., Gupta, M., & Balasubramanian, V. N. (2018, January). Proceedings of the ACM India Joint International Conference on 
Data Science and Management of Data (pp. 210-219). ACM. 

[2] Béres, F., Pálovics, R., Kelen, D., Szabó, D., & Benczúr, A. 7th International Conference on Complex Networks and Their Applications, Cambridge. 
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�����������������������������Ǥ� !ere are a few other recently proposed dynamical network embed-
ding methods, which can be used for the prediction of spreading outcome. Here we consider two of the most 
promising ones, the STWalk30,39, and the Online-Node2vec embedding methods40,41 to compare their predictive 
performances to weg2vec. Both methods are thought to build node embeddings for dynamic graphs using the 
Skip-Gram model, which introduces a signi"cant di#erence to our event embedding method.

STWalk is designed to learn trajectory representations of nodes in temporal graphs by operating with two 
graph representations, a graph at a given time step and a graph from past time steps. It performs random walks 
respectively called space-walk and time-walk, to sample environments to input for the Skip-Gram embed-
ding. !e authors propose two variants of STWalk, di#erent in the way the environment is built. In STWalk1, 
space-walk and time-walk are performed as part of a single step on a combined graph, while in STWalk2, space- 
and time-walks are done separately.

Online-Node2vec is a node embedding method updating coordinates each time a new event appears in a tem-
poral network. It also applies random walks to generate environments possibly using two strategies, the Temporal 
Walk algorithm and the Temporal Neighbourhood algorithm. In the Temporal Walk algorithm42 a temporal 
path based centrality metric is used to capture similarity between nodes by projecting nodes on the same tem-
poral path close to each other in the embedding. In the Temporal Neighbourhood algorithm43, node similarity 
is inferred via a "ngerprinting method, which projects nodes with similar neighbourhoods close to each other.

To compare the performance of the di#erent methods, we test all of them on the four empirical networks 
introduced earlier. !e environment parameter nb and s have been set to 10 and 10 for all cases to give them the 
same amount of information to learn and for a fair comparison of outcome. Further, we "x the balance parameter 
α to .0 5. We then compute the average r2 scores of simulated spreading outcomes as we vary the number of 
embedding dimensions. Since STWalk and Online-Node2vec use only the past and the present as basis for the 
nodes environment, we run the simulation for our methods using only the predecessors for each event as well (see 
Section Neighbourhood sampling strategy). Finally, as previously, we estimate the epidemic size by using the 
coordinates of the actual embedding in a linear regression model (see Section Spreading Process).

According to the results in Fig. 4, our method outperforms all the other methods on any of the networks for a 
broad range of dimensions. !e performance improves if we also consider the successors and not only the prede-
cessors in building the environment, as expected. !e exception is the hospital network, where our method gets 
lower scores with respect to Online-Node2vec for dimensions 50 or larger. In general, the di#erence in the scores 
can be explained due to the advantage of event embedding instead of node embedding. Indeed if we are looking 
at epidemic spreading mediated by temporal interactions, it becomes more natural to work with events. In the 
case of STWalk, the lower scores can be partly explained by the selection of the environments that are allowed to 
included higher-order correlations among nodes. !is more complex information coded in the environments can 
appear less relevant or noisy for the learning task here. In case of Online-Node2vec, the relative 
under-performance can be due to the fact that information of the temporal and neighbourhood information are 
considered separately instead. Missing to join these two aspects can lead to limited information and prediction 
capacities.

Figure 4. Comparison of STWalk, Online-Node2vec and our embedding methods in predicting spreading 
outcomes on empirical networks in di#erent settings as (a) conference, (b) hospital, (c) high school, and (d) 
primary school. Results shown are r2 scored obtained from linear regression on coordinates in embedding 
spaces with various dimensions computed for each method and empirical temporal networks.

Conference Hospital

High school Primary school



Conclusions
Event graphs: static lossless representations of 
temporal networks 

by mapping them as weighted directed acyclic graphs

Weg2Vec - event embedding of temporal networks 
• Identification of nodes which influence similar set of other nodes at different times 
• Low-dimensional representations based on neighbourhood sampling  
• Capture temporal correlations and mesoscale structures 

Efficient prediction of spreading outcome 
• Outperforming other temporal networks embedding methods
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